gcn训练或测试较大数据集时报shapes of all inputs must match #1432
Replies: 5 comments
-
谢谢你的issue,为了更方便地找到问题,可以贴下你的测试代码吗?以及更完整的log输出? |
Beta Was this translation helpful? Give feedback.
-
脚本是参照example修改的:graph-learn/examples/tf/gcn/train_supervised.py,这个例子用的cora数据集,我们把ogbn-products转换成了相同形式,顶点和边均不带权重,分类数和特征数和数据集匹配,训练点240万,验证点2.4万,测试点2.4万 Detected at node Sum/input defined at: |
Beta Was this translation helpful? Give feedback.
-
将训练参数neighs_num不配置成None,限制每跳采样的邻居数,即不会出现该问题。应该是None 导致采样的点太多了。 |
Beta Was this translation helpful? Give feedback.
-
Thanks for reporting! We will give a reasonable value as default. |
Beta Was this translation helpful? Give feedback.
-
@zhixiongning The |
Beta Was this translation helpful? Give feedback.
-
在用gcn训练ogbn-products数据集时,测试集数据达几百万,即便训练验证成功,测试时也会报tensorflow.python.framework.errors_impl.Invalid ArgumentError: Shapes of all inputs must match:values[0].shape=[512,100] !=values[1].shape=[511,100],batch_size为512。
当把测试集减少到一万时,测试成功。同样,当训练集数据量为几百万时,训练一段时间后也会报此问题
Beta Was this translation helpful? Give feedback.
All reactions