-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
625 lines (584 loc) · 28.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import numpy as np
from transformers import BeitImageProcessor, BeitForImageClassification
from PIL import Image
import PIL.Image as Image
import csv
from streamlit_echarts import st_echarts
from st_on_hover_tabs import on_hover_tabs
import streamlit as st
st.set_page_config(layout="wide")
import warnings
warnings.filterwarnings('ignore')
from torchvision import transforms
from datasets import load_dataset
from pytorch_grad_cam import run_dff_on_image, GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import cv2
import torch
from torch import nn
from typing import List, Callable, Optional
import os
import pandas as pd
import pydicom
labels = ["adenocarcinoma","large.cell","normal","squamous.cell"]
model_name_or_path = 'alicelouis/BeiT_NSCLC_lr2e-5'
st.markdown('''
<style>
section[data-testid='stSidebar'] {
background-color: #111;
min-width: unset !important;
width: unset !important;
flex-shrink: unset !important;
}
button[kind="header"] {
background-color: transparent;
color: rgb(180, 167, 141);
}
@media (hover) {
/* header element to be removed */
header["data"-testid="stHeader"] {
display: none;
}
/* The navigation menu specs and size */
section[data-testid='stSidebar'] > div {
height: 100%;
width: 95px;
position: relative;
z-index: 1;
top: 0;
left: 0;
background-color: #111;
overflow-x: hidden;
transition: 0.5s ease;
padding-top: 60px;
white-space: nowrap;
}
/* The navigation menu open and close on hover and size */
/* section[data-testid='stSidebar'] > div {
height: 100%;
width: 75px; /* Put some width to hover on. */
/* }
/* ON HOVER */
section[data-testid='stSidebar'] > div:hover{
width: 300px;
}
/* The button on the streamlit navigation menu - hidden */
button[kind="header"] {
display: none;
}
}
@media (max-width: 272px) {
section["data"-testid='stSidebar'] > div {
width: 15rem;
}/.
}
</style>
''', unsafe_allow_html=True)
@st.cache_resource(show_spinner=False,ttl=1800,max_entries=2)
def FeatureExtractor(model_name_or_path):
feature_extractor = BeitImageProcessor.from_pretrained(model_name_or_path)
return feature_extractor
@st.cache_resource(show_spinner=False,ttl=1800,max_entries=2)
def LoadModel(model_name_or_path):
model = BeitForImageClassification.from_pretrained(
model_name_or_path,
num_labels=len(labels),
id2label={int(i): c for i, c in enumerate(labels)},
label2id={c: int(i) for i, c in enumerate(labels)},
ignore_mismatched_sizes=True)
return model
# Model wrapper to return a tensor
class HuggingfaceToTensorModelWrapper(torch.nn.Module):
def __init__(self, model):
super(HuggingfaceToTensorModelWrapper, self).__init__()
self.model = model
def forward(self, x):
return self.model(x).logits
# """ Translate the category name to the category index.
# Some models aren't trained on Imagenet but on even larger "data"sets,
# so we can't just assume that 761 will always be remote-control.
# """
def category_name_to_index(model, category_name):
name_to_index = dict((v, k) for k, v in model.config.id2label.items())
return name_to_index[category_name]
# """ Helper function to run GradCAM on an image and create a visualization.
# (note to myself: this is probably useful enough to move into the package)
# If several targets are passed in targets_for_gradcam,
# e.g different categories,
# a visualization for each of them will be created.
# """
def print_top_categories(model, img_tensor, top_k=5):
feature_extractor = FeatureExtractor(model_name_or_path)
inputs = feature_extractor(images=img_tensor, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
indices = logits.cpu()[0, :].detach().numpy().argsort()[-top_k :][::-1]
probabilities = nn.functional.softmax(logits, dim=-1)
topK = dict()
for i in indices:
topK[model.config.id2label[i]] = probabilities[0][i].item()*100
return topK
def reshape_transform_vit_huggingface(x):
activations = x[:, 1:, :]
activations = activations.view(activations.shape[0],
14, 14, activations.shape[2])
activations = activations.transpose(2, 3).transpose(1, 2)
return activations
def count_system():
count_system = []
with open('count_class.txt', 'r') as f:
for line in f:
if line.strip() == '0':
continue
else:
count_system.append(line.strip())
f.close()
if len(count_system) != 0:
return int(len(count_system))
elif len(count_system) == 0:
return int(0)
def count_class(count_classes):
a = 0
b = 0
c = 0
d = 0
for i in range(len(count_classes)):
if count_classes[i] == "Adeno":
a += 1
elif count_classes[i] == "Normal":
b += 1
elif count_classes[i] == "Large":
c += 1
elif count_classes[i] == "Squamous":
d += 1
count_classes = []
count_classes.append(str(a))
count_classes.append(str(b))
count_classes.append(str(c))
count_classes.append(str(d))
with open("count_class.txt", "w") as f:
for count in count_classes:
f.write(count + "\n")
# Define CSS styling for centering
centered_style = """
display: flex;
justify-content: center;
"""
st.markdown(
"""
<div style='border: 2px solid green; border-radius: 5px; padding: 10px; background-color: white;'>
<h1 style='text-align: center; color: green;'>
🏥 Lung Cancer Classification with Vision Transformer : จำแนกมะเร็งปอด 🫁
</h1>
</div>
""", unsafe_allow_html=True)
with open("assets/css/style.css") as f:
st.markdown(f"<style> {f.read()} </style>",unsafe_allow_html=True)
with open("assets/webfonts/font.txt") as f:
st.markdown(f.read(),unsafe_allow_html=True)
# end def
with st.sidebar:
tabs = on_hover_tabs(tabName=['Home','Upload', 'Analytics', 'More Information', 'Reset'],
iconName=['home','upload', 'analytics', 'informations', 'refresh'],
styles={'navtab': {'background-color': '#111', 'color': '#818181', 'font-size': '18px',
'transition': '.3s', 'white-space': 'nowrap', 'text-transform': 'uppercase'},
'tabOptionsStyle':
{':hover :hover': {'color': 'red', 'cursor': 'pointer'}}, 'iconStyle':
{'position': 'fixed', 'left': '7.5px', 'text-align': 'left'}, 'tabStyle':
{'list-style-type': 'none', 'margin-bottom': '30px', 'padding-left': '30px'}},
key="1",default_choice=0)
st.markdown(
"""
<div style='border: 2px solid green; padding: 10px; white; margin-top: 5px; margin-buttom: 5px; margin-right: 20px; bottom: 50;'>
<h1 style='text-align: center; color: green; font-size: 100%'> ได้รับทุนสนับสนุน 2,000 บาท </h1>
<h1 style='text-align: center; color: green; font-size: 100%'> National Software Contest ครั้งที่ 25 </h1>
<h1 style='text-align: center; color: green; font-size: 100%'> ประจำปีงบประมาณ 2566 </h1>
</div>
""", unsafe_allow_html=True)
data_base = []
if tabs == 'Home':
st.image('How_to_use.png',use_column_width=True)
elif tabs == 'Upload': #and count_system () != 1:
uploaded_file = st.file_uploader("อัปโหลดไฟล์ภาพ", type=["jpg", "jpeg", "png", "dcm"], accept_multiple_files=True)
name_of_files = []
name_of_files_new = []
for n in uploaded_file:
file_name = n.name
name_of_files.append(file_name)
with open("save_name.txt", "w") as f:
for name in name_of_files:
f.write(name + "\n")
for j in range(len(name_of_files)):
if name_of_files[j].endswith('.dcm'):
name_of_files_new.append(name_of_files[j][:-4] + '.png')
else:
name_of_files_new.append(name_of_files[j])
for i in range(len(uploaded_file)):
if name_of_files[i].endswith('.dcm'):
ds = pydicom.dcmread(uploaded_file[i])
new_image = ds.pixel_array.astype(float)
scaled_image = (np.maximum(new_image, 0) / new_image.max()) * 255.0
scaled_image = np.uint8(scaled_image)
gray_scale = Image.fromarray(scaled_image)
final_image = gray_scale.convert('RGB')
final_image.resize((200,200))
final_image.save(r'./dcm_png/{}.png'.format(name_of_files[i]))
feature_extractor = FeatureExtractor(model_name_or_path)
model = LoadModel(model_name_or_path)
if name_of_files[i].endswith('.dcm'):
img = Image.open(r'./dcm_png/{}.png'.format(name_of_files[i]))
else:
img = Image.open(uploaded_file[i])
img_out = img.resize((224,224))
img_out = np.array(img_out)
# โหลดโมเดลที่เซฟ
image = img.resize((224,224))
img_tensor = transforms.ToTensor()(image)
def run_grad_cam_on_image(model: torch.nn.Module,
target_layer: torch.nn.Module,
targets_for_gradcam: List[Callable],
reshape_transform: Optional[Callable],
input_tensor: torch.nn.Module=img_tensor,
input_image: Image=image,
method: Callable=GradCAM):
with method(model=HuggingfaceToTensorModelWrapper(model),
target_layers=[target_layer],
reshape_transform=reshape_transform) as cam:
# Replicate the tensor for each of the categories we want to create Grad-CAM for:
repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1)
batch_results = cam(input_tensor=repeated_tensor,
targets=targets_for_gradcam)
results = []
for grayscale_cam in batch_results:
visualization = show_cam_on_image(np.float32(input_image)/255,
grayscale_cam,
use_rgb=True)
# Make it weight less in the notebook:
visualization = cv2.resize(visualization,
(visualization.shape[1]//2, visualization.shape[0]//2))
results.append(visualization)
return np.hstack(results)
inputs = feature_extractor(images=image, return_tensors="pt")
targets_for_gradcam = [ClassifierOutputTarget(category_name_to_index(model, "adenocarcinoma")),
ClassifierOutputTarget(category_name_to_index(model, "large.cell")),
ClassifierOutputTarget(category_name_to_index(model, "normal")),
ClassifierOutputTarget(category_name_to_index(model, "squamous.cell"))
]
target_layer_dff = model.beit.layernorm
target_layer_gradcam = model.beit.encoder.layer[-2].output
image_resized = image.resize((224, 224))
tensor_resized = transforms.ToTensor()(image_resized)
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 4 classes
predicted_class_idx = logits.argmax(-1).item()
className = labels[predicted_class_idx]
# display the images on streamlit
dff_image = Image.fromarray(run_dff_on_image(model=model,
target_layer=target_layer_dff,
classifier=model.classifier,
img_pil=image_resized,
img_tensor=tensor_resized,
reshape_transform=reshape_transform_vit_huggingface,
n_components=4,
top_k=4))
# dff_image.save(r"./save_images/dff_image.png")
# gradcam_image.save(r"./save_images/gradcam_image.png")
topK = print_top_categories(model, tensor_resized)
df = pd.DataFrame.from_dict(topK, orient='index')
list_to_be_sorted= []
for x, y in topK.items():
dic = dict()
dic["value"] = y
dic["name"] = x
list_to_be_sorted.append(dic)
data_base.append(y)
if list_to_be_sorted[0]['name'] == "adenocarcinoma":
dff_image.save(r"./Adenocarcinoma/{}".format(name_of_files_new[i]))
image_path = name_of_files_new[i]
with Image.open(r"./Adenocarcinoma/{}".format(image_path)) as image:
width, height = image.size
new_width = 2 * width // 3
cropped_image = image.crop((0, 0, new_width, height))
cropped_image.save(r"./Adenocarcinoma/{}".format(image_path))
elif list_to_be_sorted[0]['name'] == "large.cell":
dff_image.save(r"./Large cell carcinoma/{}".format(name_of_files_new[i]))
image_path = name_of_files_new[i]
with Image.open(r"./Large cell carcinoma/{}".format(image_path)) as image:
width, height = image.size
new_width = 2 * width // 3
cropped_image = image.crop((0, 0, new_width, height))
cropped_image.save(r"./Large cell carcinoma/{}".format(image_path))
#dff_image.save(r".\Large cell carcinoma\{}".format(name_of_files_new[i]))
elif list_to_be_sorted[0]['name'] == "normal":
dff_image.save(r"./Normal/{}".format(name_of_files_new[i]))
image_path = name_of_files_new[i]
with Image.open(r"./Normal/{}".format(image_path)) as image:
width, height = image.size
new_width = 2 * width // 3
cropped_image = image.crop((0, 0, new_width, height))
cropped_image.save(r"./Normal/{}".format(image_path))
#dff_image.save(r"./Normal/{}".format(name_of_files_new[i]))
elif list_to_be_sorted[0]['name'] == "squamous.cell":
dff_image.save(r"./Squamous cell carcinoma/{}".format(name_of_files_new[i]))
image_path = name_of_files_new[i]
with Image.open(r"./Squamous cell carcinoma/{}".format(image_path)) as image:
width, height = image.size
new_width = 2 * width // 3
cropped_image = image.crop((0, 0, new_width, height))
cropped_image.save(r"./Squamous cell carcinoma/{}".format(image_path))
#dff_image.save(r".\Squamous cell carcinoma\{}".format(name_of_files_new[i]))
# st.image(dff_image, use_column_width=True)
# st.image(gradcam_image, use_column_width=True)
st.balloons()
# Create a container for the two columns
container = st.container()
# Create two columns within the container
col1, col2 = container.columns(2)
col3, col4 = container.columns(2)
col5, col6 = container.columns(2)
# Add the first subheader to the first column
count_classes = [] #Adenocarcinoma, Normal, Large cell carcinoma, Squamous cell carcinoma
with col1:
st.markdown("<h2 style='text-align: center; border: 2px solid #5370c6; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Adenocarcinoma </h2>".format(centered_style), unsafe_allow_html=True)
# Add the second subheader to the second column
folder_path = r"./Adenocarcinoma"
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
# Display the images in a loop
for i in range(0, len(image_files), 2):
col7, col8 = st.columns([1, 1])
with col7:
if i < len(image_files):
image1 = Image.open(os.path.join(folder_path, image_files[i]))
st.image(image1, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #5370c6; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
count_classes.append("Adeno")
with col8:
if i+1 < len(image_files):
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
st.image(image2, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #5370c6; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
count_classes.append("Adeno")
with col2:
st.markdown("<h2 style='text-align: center; border: 2px solid green; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Normal </h2>".format(centered_style), unsafe_allow_html=True)
folder_path = r"./Normal"
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
# Display the images in a loop
for i in range(0, len(image_files), 2):
col9, col10 = st.columns([1, 1])
with col9:
if i < len(image_files):
image1 = Image.open(os.path.join(folder_path, image_files[i]))
st.image(image1, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: green; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
count_classes.append("Normal")
with col10:
if i+1 < len(image_files):
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
st.image(image2, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: green; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
count_classes.append("Normal")
with col3:
st.markdown("")
with col4:
st.markdown("")
with col5:
st.markdown("<h2 style='text-align: center; border: 2px solid orange; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Large cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
folder_path = r"./Large cell carcinoma"
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
# Display the images in a loop
for i in range(0, len(image_files), 2):
col11, col12 = st.columns([1, 1])
with col11:
if i < len(image_files):
image1 = Image.open(os.path.join(folder_path, image_files[i]))
st.image(image1, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: orange; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
count_classes.append("Large")
with col12:
if i+1 < len(image_files):
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
st.image(image2, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: orange; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
count_classes.append("Large")
with col6:
st.markdown("<h2 style='text-align: center; border: 2px solid #f16565; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Squamous cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
folder_path = r"./Squamous cell carcinoma"
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
# Display the images in a loop
for i in range(0, len(image_files), 2):
col13, col14 = st.columns([1, 1])
with col13:
if i < len(image_files):
image1 = Image.open(os.path.join(folder_path, image_files[i]))
st.image(image1, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #f16565; font-size: 32px;'>{image_files[i]}</p>", unsafe_allow_html=True)
count_classes.append("Squamous")
with col14:
if i+1 < len(image_files):
image2 = Image.open(os.path.join(folder_path, image_files[i+1]))
st.image(image2, use_column_width=True)
st.write(f"<p style='text-align: center; color: black; border: 2px solid white; border-radius: 10px; padding: 10px; background-color: #f16565; font-size: 32px;'>{image_files[i+1]}</p>", unsafe_allow_html=True)
count_classes.append("Squamous")
count_class(count_classes)
elif tabs == 'Analytics' and count_system() > 0:
data_base = []
data_base_max = []
#max_value = max(data_base)
#max_index = data_base.index(max_value)
with open('count_class.txt', 'r') as f:
for line in f:
data_base.append(line.strip())
data_base_max.append(int(line.strip()))
max_value = max(data_base_max) # Find the maximum value in the list
max_index = data_base_max.index(max_value)
max_indices = [i for i, value in enumerate(data_base_max) if value == max_value]
if len(max_indices) > 1:
max_index = 4
option = {
"tooltip": {
"trigger": 'axis',
"axisPointer": {
# Use axis to trigger tooltip
"type": 'shadow' # 'shadow' as default; can also be 'line' or 'shadow'
}
},
"legend": {},
"grid": {
"left": '3%',
"right": '4%',
"bottom": '3%',
"containLabel": True
},
"xAxis": {
"type": 'value'
},
"yAxis": {
"type": 'category',
"data": ['Results']
},
"series": [
{
"name": 'Adenocarcinoma',
"type": 'bar',
"stack": 'total',
"label": {
"show": True
},
"emphasis": {
"focus": 'series'
},
"data": [data_base[0]]
},
{
"name": 'Normal',
"type": 'bar',
"stack": 'total',
"label": {
"show": True
},
"emphasis": {
"focus": 'series'
},
"data": [data_base[1]]
},
{
"name": 'Large.Cell',
"type": 'bar',
"stack": 'total',
"label": {
"show": True
},
"emphasis": {
"focus": 'series'
},
"data": [data_base[2]]
},
{
"name": 'Squamous.Cell',
"type": 'bar',
"stack": 'total',
"label": {
"show": True
},
"emphasis": {
"focus": 'series'
},
"data": [data_base[3]]
},
]
}
st_echarts(options=option)
if max_index == 0:
st.markdown("<h2 style='text-align: center; border: 2px solid #5370c6; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Adenocarcinoma </h2>".format(centered_style), unsafe_allow_html=True)
elif max_index == 1:
st.markdown("<h2 style='text-align: center; border: 2px solid green; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Normal </h2>".format(centered_style), unsafe_allow_html=True)
elif max_index == 2:
st.markdown("<h2 style='text-align: center; border: 2px solid orange; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Large cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
elif max_index == 3:
st.markdown("<h2 style='text-align: center; border: 2px solid #f16565; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Squamous cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
elif tabs == 'Analytics' and count_system() == 0:
st.markdown(
"""
<div style='border: 2px solid red; border-radius: 5px; padding: 5px; background-color: white;'>
<h3 style='text-align: center; color: red; font-size: 180%'> 🖼️ Image Analytics Not Detected ❌ </h3>
</div>
""", unsafe_allow_html=True)
elif tabs == 'More Information':
st.markdown(
"""
<div style='border: 2px dashed blue; border-radius: 5px; padding: 5px; background-color: white;'>
<h3 style='text-align: center; color: black; font-size: 180%'> 💻 Organizers 🖱️ </h3>
</div>
""", unsafe_allow_html=True)
st.markdown(
"""
<div style="display:flex; justify-content:center; align-items:center;">
<img src="https://drive.google.com/uc?export=view&id=1xupbYYXQZzjwMQiVGwT636oCXMga2ETF" style="width:300px; height:200px; margin: 10px;">
<img src="https://drive.google.com/uc?export=view&id=1evDy9sDtJ1T_WVR1bUnfyZkeSMjT9pfr" style="width:300px; height:200px; margin: 10px;">
<img src="https://drive.google.com/uc?export=view&id=1Sebh31aX8vdNe8P7oyBL714J_0qA5WYt" style="width:300px; height:200px; margin: 10px;">
</div>
""", unsafe_allow_html=True)
st.markdown(
"""
<div style="display:flex; justify-content:center; align-items:center;">
<h3 style="width:300px; height:200px; margin: 10px; font-size: 50% text-align: center;' "> 👑 Santipab Tongchan\nCall : 090-2471512 \n "[email protected]" </h3>
<h3 style="width:300px; height:200px; margin: 10px; font-size: 50% text-align: center;' "> Phakkhaphon Artburai\nCall : 091-0197314 \n "[email protected]" </h3>
<h3 style="width:300px; height:200px; margin: 10px; font-size: 50% text-align: center;' "> Natthawee Naewkumpol\nCall : 061-9487722 \n "[email protected]" </h3>
</div>
""", unsafe_allow_html=True)
st.markdown(
"""
<div style='border: 2px solid orange; border-radius: 5px; padding: 5px; background-color: white;'>
<h3 style='text-align: center; color: blue; font-size: 200%'> Princess Chulabhorn Science High School Buriram </h3>
</div>
""", unsafe_allow_html=True)
elif tabs == 'Reset':
def clear_folder(folder_name):
# Check if the folder exists
if not os.path.exists(folder_name):
print(f"{folder_name} does not exist.")
return
# Get a list of all files in the folder and its subdirectories
files = []
for dirpath, dirnames, filenames in os.walk(folder_name):
for filename in filenames:
files.append(os.path.join(dirpath, filename))
# Delete all files in the list
for file in files:
os.remove(file)
clear_folder('Adenocarcinoma')
clear_folder('Large cell carcinoma')
clear_folder('Normal')
clear_folder('Squamous cell carcinoma')
clear_folder('dcm_png')
#clear data in count_class
with open('count_class.txt', 'w') as file:
file.write('')
st.markdown(
"""
<div style='border: 2px solid #00FFFF; border-radius: 5px; padding: 5px; background-color: white;'>
<h3 style='text-align: center; color: blue; font-size: 180%'> 🔃 The information has been cleared. ✅ </h3>
</div>
""", unsafe_allow_html=True)