-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPoly.v
1299 lines (985 loc) · 42.7 KB
/
Poly.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(** * Poly: Polymorphism and Higher-Order Functions *)
(* Final reminder: Please do not put solutions to the exercises in
publicly accessible places. Thank you!! *)
(* Suppress some annoying warnings from Coq: *)
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From LF Require Export Lists.
(* ################################################################# *)
(** * Polymorphism *)
(** In this chapter we continue our development of basic
concepts of functional programming. The critical new ideas are
_polymorphism_ (abstracting functions over the types of the data
they manipulate) and _higher-order functions_ (treating functions
as data). We begin with polymorphism. *)
(* ================================================================= *)
(** ** Polymorphic Lists *)
(** For the last chapter, we've been working with lists
containing just numbers. Obviously, interesting programs also
need to be able to manipulate lists with elements from other
types -- lists of booleans, lists of lists, etc. We _could_ just
define a new inductive datatype for each of these, for
example... *)
Inductive boollist : Type :=
| bool_nil
| bool_cons (b : bool) (l : boollist).
(** ... but this would quickly become tedious, partly because we
have to make up different constructor names for each datatype, but
mostly because we would also need to define new versions of all
our list manipulating functions ([length], [rev], etc.) and all
their properties ([rev_length], [app_assoc], etc.) for each
new datatype definition. *)
(** To avoid all this repetition, Coq supports _polymorphic_
inductive type definitions. For example, here is a _polymorphic
list_ datatype. *)
Inductive list (X:Type) : Type :=
| nil
| cons (x : X) (l : list X).
(** This is exactly like the definition of [natlist] from the
previous chapter, except that the [nat] argument to the [cons]
constructor has been replaced by an arbitrary type [X], a binding
for [X] has been added to the function header on the first line,
and the occurrences of [natlist] in the types of the constructors
have been replaced by [list X].
What sort of thing is [list] itself? A good way to think about it
is that the definition of [list] is a _function_ from [Type]s to
[Inductive] definitions; or, to put it more concisely, [list] is a
function from [Type]s to [Type]s. For any particular type [X],
the type [list X] is the [Inductive]ly defined set of lists whose
elements are of type [X]. *)
Check list : Type -> Type.
(** The [X] in the definition of [list] automatically becomes a
parameter to the constructors [nil] and [cons] -- that is, [nil]
and [cons] are now polymorphic constructors; when we use them, we
must now provide a first argument that is the type of the list
they are building. For example, [nil nat] constructs the empty
list of type [nat]. *)
Check (nil nat) : list nat.
(** Similarly, [cons nat] adds an element of type [nat] to a list of
type [list nat]. Here is an example of forming a list containing
just the natural number 3. *)
Check (cons nat 3 (nil nat)) : list nat.
(** What might the type of [nil] be? We can read off the type
[list X] from the definition, but this omits the binding for [X]
which is the parameter to [list]. [Type -> list X] does not
explain the meaning of [X]. [(X : Type) -> list X] comes
closer. Coq's notation for this situation is [forall X : Type,
list X]. *)
Check nil : forall X : Type, list X.
(** Similarly, the type of [cons] from the definition looks like
[X -> list X -> list X], but using this convention to explain the
meaning of [X] results in the type [forall X, X -> list X -> list
X]. *)
Check cons : forall X : Type, X -> list X -> list X.
(** (A side note on notations: In .v files, the "forall"
quantifier is spelled out in letters. In the corresponding HTML
files (and in the way some IDEs show .v files, depending on the
settings of their display controls), [forall] is usually typeset
as the standard mathematical "upside down A," though you'll still
see the spelled-out "forall" in a few places. This is just a
quirk of typesetting -- there is no difference in meaning.) *)
(** Having to supply a type argument for every single use of a
list constructor would be rather burdensome; we will soon see ways
of reducing this annotation burden. *)
Check (cons nat 2 (cons nat 1 (nil nat)))
: list nat.
(** We can now go back and make polymorphic versions of all the
list-processing functions that we wrote before. Here is [repeat],
for example: *)
Fixpoint repeat (X : Type) (x : X) (count : nat) : list X :=
match count with
| 0 => nil X
| S count' => cons X x (repeat X x count')
end.
(** As with [nil] and [cons], we can use [repeat] by applying it
first to a type and then to an element of this type (and a number): *)
Example test_repeat1 :
repeat nat 4 2 = cons nat 4 (cons nat 4 (nil nat)).
Proof. reflexivity. Qed.
(** To use [repeat] to build other kinds of lists, we simply
instantiate it with an appropriate type parameter: *)
Example test_repeat2 :
repeat bool false 1 = cons bool false (nil bool).
Proof. reflexivity. Qed.
(** **** Exercise: 2 stars, standard, optional (mumble_grumble)
Consider the following two inductively defined types. *)
Module MumbleGrumble.
Inductive mumble : Type :=
| a
| b (x : mumble) (y : nat)
| c.
Inductive grumble (X:Type) : Type :=
| d (m : mumble)
| e (x : X).
(** Which of the following are well-typed elements of [grumble X] for
some type [X]? (Add YES or NO to each line.)
- [d (b a 5)]
- [d mumble (b a 5)]
- [d bool (b a 5)]
- [e bool true]
- [e mumble (b c 0)]
- [e bool (b c 0)]
- [c] *)
(*
YES
YES
NO
YES
YES
NO
NO
*)
End MumbleGrumble.
(** [] *)
(* ----------------------------------------------------------------- *)
(** *** Type Annotation Inference *)
(** Let's write the definition of [repeat] again, but this time we
won't specify the types of any of the arguments. Will Coq still
accept it? *)
Fixpoint repeat' X x count : list X :=
match count with
| 0 => nil X
| S count' => cons X x (repeat' X x count')
end.
(** Indeed it will. Let's see what type Coq has assigned to [repeat']... *)
Check repeat'
: forall X : Type, X -> nat -> list X.
Check repeat
: forall X : Type, X -> nat -> list X.
(** It has exactly the same type as [repeat]. Coq was able to
use _type inference_ to deduce what the types of [X], [x], and
[count] must be, based on how they are used. For example, since
[X] is used as an argument to [cons], it must be a [Type], since
[cons] expects a [Type] as its first argument; matching [count]
with [0] and [S] means it must be a [nat]; and so on.
This powerful facility means we don't always have to write
explicit type annotations everywhere, although explicit type
annotations can still be quite useful as documentation and sanity
checks, so we will continue to use them much of the time. *)
(* ----------------------------------------------------------------- *)
(** *** Type Argument Synthesis *)
(** To use a polymorphic function, we need to pass it one or
more types in addition to its other arguments. For example, the
recursive call in the body of the [repeat] function above must
pass along the type [X]. But since the second argument to
[repeat] is an element of [X], it seems entirely obvious that the
first argument can only be [X] -- why should we have to write it
explicitly?
Fortunately, Coq permits us to avoid this kind of redundancy. In
place of any type argument we can write a "hole" [_], which can be
read as "Please try to figure out for yourself what belongs here."
More precisely, when Coq encounters a [_], it will attempt to
_unify_ all locally available information -- the type of the
function being applied, the types of the other arguments, and the
type expected by the context in which the application appears --
to determine what concrete type should replace the [_].
This may sound similar to type annotation inference -- and, indeed,
the two procedures rely on the same underlying mechanisms. Instead
of simply omitting the types of some arguments to a function, like
repeat' X x count : list X :=
we can also replace the types with holes
repeat' (X : _) (x : _) (count : _) : list X :=
to tell Coq to attempt to infer the missing information.
Using holes, the [repeat] function can be written like this: *)
Fixpoint repeat'' X x count : list X :=
match count with
| 0 => nil _
| S count' => cons _ x (repeat'' _ x count')
end.
(** In this instance, we don't save much by writing [_] instead of
[X]. But in many cases the difference in both keystrokes and
readability is nontrivial. For example, suppose we want to write
down a list containing the numbers [1], [2], and [3]. Instead of
this... *)
Definition list123 :=
cons nat 1 (cons nat 2 (cons nat 3 (nil nat))).
(** ...we can use holes to write this: *)
Definition list123' :=
cons _ 1 (cons _ 2 (cons _ 3 (nil _))).
(* ----------------------------------------------------------------- *)
(** *** Implicit Arguments *)
(** In fact, we can go further and even avoid writing [_]'s in most
cases by telling Coq _always_ to infer the type argument(s) of a
given function.
The [Arguments] directive specifies the name of the function (or
constructor) and then lists the (leading) argument names to be
treated as implicit, each surrounded by curly braces. *)
Arguments nil {X}.
Arguments cons {X}.
Arguments repeat {X}.
(** Now we don't have to supply any type arguments at all in the example: *)
Definition list123'' := cons 1 (cons 2 (cons 3 nil)).
(** Alternatively, we can declare an argument to be implicit
when defining the function itself, by surrounding it in curly
braces instead of parens. For example: *)
Fixpoint repeat''' {X : Type} (x : X) (count : nat) : list X :=
match count with
| 0 => nil
| S count' => cons x (repeat''' x count')
end.
(** (Note that we didn't even have to provide a type argument to the
recursive call to [repeat''']. Indeed, it would be invalid to
provide one, because Coq is not expecting it.)
We will use the latter style whenever possible, but we will
continue to use explicit [Argument] declarations for [Inductive]
constructors. The reason for this is that marking the parameter
of an inductive type as implicit causes it to become implicit for
the type itself, not just for its constructors. For instance,
consider the following alternative definition of the [list]
type: *)
Inductive list' {X:Type} : Type :=
| nil'
| cons' (x : X) (l : list').
(** Because [X] is declared as implicit for the _entire_ inductive
definition including [list'] itself, we now have to write just
[list'] whether we are talking about lists of numbers or booleans
or anything else, rather than [list' nat] or [list' bool] or
whatever; this is a step too far. *)
(** Let's finish by re-implementing a few other standard list
functions on our new polymorphic lists... *)
Fixpoint app {X : Type} (l1 l2 : list X) : list X :=
match l1 with
| nil => l2
| cons h t => cons h (app t l2)
end.
Fixpoint rev {X:Type} (l:list X) : list X :=
match l with
| nil => nil
| cons h t => app (rev t) (cons h nil)
end.
Fixpoint length {X : Type} (l : list X) : nat :=
match l with
| nil => 0
| cons _ l' => S (length l')
end.
Example test_rev1 :
rev (cons 1 (cons 2 nil)) = (cons 2 (cons 1 nil)).
Proof. reflexivity. Qed.
Example test_rev2:
rev (cons true nil) = cons true nil.
Proof. reflexivity. Qed.
Example test_length1: length (cons 1 (cons 2 (cons 3 nil))) = 3.
Proof. reflexivity. Qed.
(* ----------------------------------------------------------------- *)
(** *** Supplying Type Arguments Explicitly *)
(** One small problem with declaring arguments to be implicit is
that, once in a while, Coq does not have enough local information
to determine a type argument; in such cases, we need to tell Coq
that we want to give the argument explicitly just this time. For
example, suppose we write this: *)
Fail Definition mynil := nil.
(** (The [Fail] qualifier that appears before [Definition] can be
used with _any_ command, and is used to ensure that that command
indeed fails when executed. If the command does fail, Coq prints
the corresponding error message, but continues processing the rest
of the file.)
Here, Coq gives us an error because it doesn't know what type
argument to supply to [nil]. We can help it by providing an
explicit type declaration (so that Coq has more information
available when it gets to the "application" of [nil]): *)
Definition mynil : list nat := nil.
(** Alternatively, we can force the implicit arguments to be explicit by
prefixing the function name with [@]. *)
Check @nil : forall X : Type, list X.
Definition mynil' := @nil nat.
(** Using argument synthesis and implicit arguments, we can
define convenient notation for lists, as before. Since we have
made the constructor type arguments implicit, Coq will know to
automatically infer these when we use the notations. *)
Notation "x :: y" := (cons x y)
(at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y []) ..).
Notation "x ++ y" := (app x y)
(at level 60, right associativity).
(** Now lists can be written just the way we'd hope: *)
Definition list123''' := [1; 2; 3].
(* ----------------------------------------------------------------- *)
(** *** Exercises *)
(** **** Exercise: 2 stars, standard (poly_exercises)
Here are a few simple exercises, just like ones in the [Lists]
chapter, for practice with polymorphism. Complete the proofs
below. *)
Theorem app_nil_r : forall (X:Type), forall l:list X,
l ++ [] = l.
Proof.
intros. induction l as [|H T IH].
- reflexivity.
- simpl. rewrite IH. reflexivity.
Qed.
Theorem app_assoc : forall A (l m n:list A),
l ++ m ++ n = (l ++ m) ++ n.
Proof.
intros.
induction l as [|H T IH].
- reflexivity.
- simpl. rewrite IH. reflexivity.
Qed.
Lemma app_length : forall (X:Type) (l1 l2 : list X),
length (l1 ++ l2) = length l1 + length l2.
Proof.
intros.
induction l1 as [|H T IH].
- reflexivity.
- simpl. rewrite IH. reflexivity.
Qed.
(** [] *)
(** **** Exercise: 2 stars, standard (more_poly_exercises)
Here are some slightly more interesting ones... *)
Theorem rev_app_distr: forall X (l1 l2 : list X),
rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof.
intros.
induction l1 as [|H T IH].
- rewrite app_nil_r. reflexivity.
- simpl. rewrite IH. rewrite app_assoc. reflexivity.
Qed.
Theorem rev_involutive : forall X : Type, forall l : list X,
rev (rev l) = l.
Proof.
intro.
induction l as [|H T IH].
- reflexivity.
- simpl. rewrite rev_app_distr. rewrite IH. reflexivity.
Qed.
(** [] *)
(* ================================================================= *)
(** ** Polymorphic Pairs *)
(** Following the same pattern, the definition for pairs of
numbers that we gave in the last chapter can be generalized to
_polymorphic pairs_, often called _products_: *)
Inductive prod (X Y : Type) : Type :=
| pair (x : X) (y : Y).
Arguments pair {X} {Y}.
(** As with lists, we make the type arguments implicit and define the
familiar concrete notation. *)
Notation "( x , y )" := (pair x y).
(** We can also use the [Notation] mechanism to define the standard
notation for _product types_ (i.e., the types of pairs): *)
Notation "X * Y" := (prod X Y) : type_scope.
(** (The annotation [: type_scope] tells Coq that this abbreviation
should only be used when parsing types, not when parsing
expressions. This avoids a clash with the multiplication
symbol.) *)
(** It is easy at first to get [(x,y)] and [X*Y] confused.
Remember that [(x,y)] is a _value_ built from two other values,
while [X*Y] is a _type_ built from two other types. If [x] has
type [X] and [y] has type [Y], then [(x,y)] has type [X*Y]. *)
(** The first and second projection functions now look pretty
much as they would in any functional programming language. *)
Definition fst {X Y : Type} (p : X * Y) : X :=
match p with
| (x, y) => x
end.
Definition snd {X Y : Type} (p : X * Y) : Y :=
match p with
| (x, y) => y
end.
(** The following function takes two lists and combines them
into a list of pairs. In other functional languages, it is often
called [zip]; we call it [combine] for consistency with Coq's
standard library. *)
Fixpoint combine {X Y : Type} (lx : list X) (ly : list Y)
: list (X*Y) :=
match lx, ly with
| [], _ => []
| _, [] => []
| x :: tx, y :: ty => (x, y) :: (combine tx ty)
end.
(** **** Exercise: 1 star, standard, optional (combine_checks)
Try answering the following questions on paper and
checking your answers in Coq:
- What is the type of [combine] (i.e., what does [Check
@combine] print?)
- What does
Compute (combine [1;2] [false;false;true;true]).
print?
[] *)
(*
- type of combine is: forall X Y: Type, list X => list Y => list (X*Y)
- same thing
- [(1,false);(2,false)] *)
(** **** Exercise: 2 stars, standard, especially useful (split)
The function [split] is the right inverse of [combine]: it takes a
list of pairs and returns a pair of lists. In many functional
languages, it is called [unzip].
Fill in the definition of [split] below. Make sure it passes the
given unit test. *)
Fixpoint split {X Y : Type} (l : list (X*Y)) : (list X) * (list Y) :=
match l with
| [] => ([], [])
| (h1, h2)::t =>
match (split t) with
| (l1, l2) => (h1::l1, h2::l2)
end
end.
Example test_split:
split [(1,false);(2,false)] = ([1;2],[false;false]).
Proof. reflexivity. Qed.
(** [] *)
(* ================================================================= *)
(** ** Polymorphic Options *)
(** Our last polymorphic type for now is _polymorphic options_,
which generalize [natoption] from the previous chapter. (We put
the definition inside a module because the standard library
already defines [option] and it's this one that we want to use
below.) *)
Module OptionPlayground.
Inductive option (X:Type) : Type :=
| Some (x : X)
| None.
Arguments Some {X}.
Arguments None {X}.
End OptionPlayground.
(** We can now rewrite the [nth_error] function so that it works
with any type of lists. *)
Fixpoint nth_error {X : Type} (l : list X) (n : nat)
: option X :=
match l with
| nil => None
| a :: l' => match n with
| O => Some a
| S n' => nth_error l' n'
end
end.
Example test_nth_error1 : nth_error [4;5;6;7] 0 = Some 4.
Proof. reflexivity. Qed.
Example test_nth_error2 : nth_error [[1];[2]] 1 = Some [2].
Proof. reflexivity. Qed.
Example test_nth_error3 : nth_error [true] 2 = None.
Proof. reflexivity. Qed.
(** **** Exercise: 1 star, standard, optional (hd_error_poly)
Complete the definition of a polymorphic version of the
[hd_error] function from the last chapter. Be sure that it
passes the unit tests below. *)
Definition hd_error {X : Type} (l : list X) : option X :=
match l with
| [] => None
| h::t => Some h
end.
(** Once again, to force the implicit arguments to be explicit,
we can use [@] before the name of the function. *)
Check @hd_error : forall X : Type, list X -> option X.
Example test_hd_error1 : hd_error [1;2] = Some 1.
Proof. reflexivity. Qed.
Example test_hd_error2 : hd_error [[1];[2]] = Some [1].
Proof. reflexivity. Qed.
(** [] *)
(* ################################################################# *)
(** * Functions as Data *)
(** Like most modern programming languages -- especially other
"functional" languages, including OCaml, Haskell, Racket, Scala,
Clojure, etc. -- Coq treats functions as first-class citizens,
allowing them to be passed as arguments to other functions,
returned as results, stored in data structures, etc. *)
(* ================================================================= *)
(** ** Higher-Order Functions *)
(** Functions that manipulate other functions are often called
_higher-order_ functions. Here's a simple one: *)
Definition doit3times {X : Type} (f : X->X) (n : X) : X :=
f (f (f n)).
(** The argument [f] here is itself a function (from [X] to
[X]); the body of [doit3times] applies [f] three times to some
value [n]. *)
Check @doit3times : forall X : Type, (X -> X) -> X -> X.
Example test_doit3times: doit3times minustwo 9 = 3.
Proof. reflexivity. Qed.
Example test_doit3times': doit3times negb true = false.
Proof. reflexivity. Qed.
(* ================================================================= *)
(** ** Filter *)
(** Here is a more useful higher-order function, taking a list
of [X]s and a _predicate_ on [X] (a function from [X] to [bool])
and "filtering" the list, returning a new list containing just
those elements for which the predicate returns [true]. *)
Fixpoint filter {X:Type} (test: X->bool) (l:list X) : list X :=
match l with
| [] => []
| h :: t =>
if test h then h :: (filter test t)
else filter test t
end.
(** For example, if we apply [filter] to the predicate [even]
and a list of numbers [l], it returns a list containing just the
even members of [l]. *)
Example test_filter1: filter even [1;2;3;4] = [2;4].
Proof. reflexivity. Qed.
Definition length_is_1 {X : Type} (l : list X) : bool :=
(length l) =? 1.
Example test_filter2:
filter length_is_1
[ [1; 2]; [3]; [4]; [5;6;7]; []; [8] ]
= [ [3]; [4]; [8] ].
Proof. reflexivity. Qed.
(** We can use [filter] to give a concise version of the
[countoddmembers] function from the [Lists] chapter. *)
Definition countoddmembers' (l:list nat) : nat :=
length (filter odd l).
Example test_countoddmembers'1: countoddmembers' [1;0;3;1;4;5] = 4.
Proof. reflexivity. Qed.
Example test_countoddmembers'2: countoddmembers' [0;2;4] = 0.
Proof. reflexivity. Qed.
Example test_countoddmembers'3: countoddmembers' nil = 0.
Proof. reflexivity. Qed.
(* ================================================================= *)
(** ** Anonymous Functions *)
(** It is arguably a little sad, in the example just above, to
be forced to define the function [length_is_1] and give it a name
just to be able to pass it as an argument to [filter], since we
will probably never use it again. Moreover, this is not an
isolated example: when using higher-order functions, we often want
to pass as arguments "one-off" functions that we will never use
again; having to give each of these functions a name would be
tedious.
Fortunately, there is a better way. We can construct a function
"on the fly" without declaring it at the top level or giving it a
name. *)
Example test_anon_fun':
doit3times (fun n => n * n) 2 = 256.
Proof. reflexivity. Qed.
(** The expression [(fun n => n * n)] can be read as "the function
that, given a number [n], yields [n * n]." *)
(** Here is the [filter] example, rewritten to use an anonymous
function. *)
Example test_filter2':
filter (fun l => (length l) =? 1)
[ [1; 2]; [3]; [4]; [5;6;7]; []; [8] ]
= [ [3]; [4]; [8] ].
Proof. reflexivity. Qed.
(** **** Exercise: 2 stars, standard (filter_even_gt7)
Use [filter] (instead of [Fixpoint]) to write a Coq function
[filter_even_gt7] that takes a list of natural numbers as input
and returns a list of just those that are even and greater than
7. *)
Definition filter_even_gt7 (l : list nat) : list nat :=
filter (fun x => (even x) && (negb (leb x 7))) l.
Example test_filter_even_gt7_1 :
filter_even_gt7 [1;2;6;9;10;3;12;8] = [10;12;8].
Proof. reflexivity. Qed.
Example test_filter_even_gt7_2 :
filter_even_gt7 [5;2;6;19;129] = [].
Proof. reflexivity. Qed.
(** [] *)
(** **** Exercise: 3 stars, standard (partition)
Use [filter] to write a Coq function [partition]:
partition : forall X : Type,
(X -> bool) -> list X -> list X * list X
Given a set [X], a predicate of type [X -> bool] and a [list X],
[partition] should return a pair of lists. The first member of the
pair is the sublist of the original list containing the elements
that satisfy the test, and the second is the sublist containing
those that fail the test. The order of elements in the two
sublists should be the same as their order in the original list. *)
Definition partition {X : Type}
(test : X -> bool)
(l : list X)
: list X * list X :=
(filter test l, filter (fun x => negb (test x)) l).
Example test_partition1: partition odd [1;2;3;4;5] = ([1;3;5], [2;4]).
Proof. reflexivity. Qed.
Example test_partition2: partition (fun x => false) [5;9;0] = ([], [5;9;0]).
Proof. reflexivity. Qed.
(** [] *)
(* ================================================================= *)
(** ** Map *)
(** Another handy higher-order function is called [map]. *)
Fixpoint map {X Y : Type} (f : X->Y) (l : list X) : list Y :=
match l with
| [] => []
| h :: t => (f h) :: (map f t)
end.
(** It takes a function [f] and a list [ l = [n1, n2, n3, ...] ]
and returns the list [ [f n1, f n2, f n3,...] ], where [f] has
been applied to each element of [l] in turn. For example: *)
Example test_map1: map (fun x => plus 3 x) [2;0;2] = [5;3;5].
Proof. reflexivity. Qed.
(** The element types of the input and output lists need not be
the same, since [map] takes _two_ type arguments, [X] and [Y]; it
can thus be applied to a list of numbers and a function from
numbers to booleans to yield a list of booleans: *)
Example test_map2:
map odd [2;1;2;5] = [false;true;false;true].
Proof. reflexivity. Qed.
(** It can even be applied to a list of numbers and
a function from numbers to _lists_ of booleans to
yield a _list of lists_ of booleans: *)
Example test_map3:
map (fun n => [even n;odd n]) [2;1;2;5]
= [[true;false];[false;true];[true;false];[false;true]].
Proof. reflexivity. Qed.
(* ----------------------------------------------------------------- *)
(** *** Exercises *)
(** **** Exercise: 3 stars, standard (map_rev)
Show that [map] and [rev] commute. You may need to define an
auxiliary lemma. *)
Lemma map_app: forall (X Y : Type) (f : X -> Y) (l1 l2 : list X),
map f l1 ++ map f l2 = map f (l1++l2).
Proof. intros.
induction l1 as [|H T IH].
- reflexivity.
- simpl. rewrite IH. reflexivity.
Qed.
Theorem map_rev : forall (X Y : Type) (f : X -> Y) (l : list X),
map f (rev l) = rev (map f l).
Proof.
intros.
induction l as [|H T IH].
- reflexivity.
- simpl. rewrite <- map_app. rewrite IH. reflexivity.
Qed.
(** [] *)
(** **** Exercise: 2 stars, standard, especially useful (flat_map)
The function [map] maps a [list X] to a [list Y] using a function
of type [X -> Y]. We can define a similar function, [flat_map],
which maps a [list X] to a [list Y] using a function [f] of type
[X -> list Y]. Your definition should work by 'flattening' the
results of [f], like so:
flat_map (fun n => [n;n+1;n+2]) [1;5;10]
= [1; 2; 3; 5; 6; 7; 10; 11; 12].
*)
Fixpoint flat_map {X Y: Type} (f: X -> list Y) (l: list X)
: list Y :=
match l with
| [] => []
| h::t => (f h)++flat_map f t
end.
Example test_flat_map1:
flat_map (fun n => [n;n;n]) [1;5;4]
= [1; 1; 1; 5; 5; 5; 4; 4; 4].
Proof. reflexivity. Qed.
(** [] *)
(** Lists are not the only inductive type for which [map] makes sense.
Here is a [map] for the [option] type: *)
Definition option_map {X Y : Type} (f : X -> Y) (xo : option X)
: option Y :=
match xo with
| None => None
| Some x => Some (f x)
end.
(** **** Exercise: 2 stars, standard, optional (implicit_args)
The definitions and uses of [filter] and [map] use implicit
arguments in many places. Replace the curly braces around the
implicit arguments with parentheses, and then fill in explicit
type parameters where necessary and use Coq to check that you've
done so correctly. (This exercise is not to be turned in; it is
probably easiest to do it on a _copy_ of this file that you can
throw away afterwards.)
*)
(** [] *)
(* ================================================================= *)
(** ** Fold *)
(** An even more powerful higher-order function is called
[fold]. This function is the inspiration for the "[reduce]"
operation that lies at the heart of Google's map/reduce
distributed programming framework. *)
Fixpoint fold {X Y: Type} (f : X->Y->Y) (l : list X) (b : Y)
: Y :=
match l with
| nil => b
| h :: t => f h (fold f t b)
end.
(** Intuitively, the behavior of the [fold] operation is to
insert a given binary operator [f] between every pair of elements
in a given list. For example, [ fold plus [1;2;3;4] ] intuitively
means [1+2+3+4]. To make this precise, we also need a "starting
element" that serves as the initial second input to [f]. So, for
example,
fold plus [1;2;3;4] 0
yields
1 + (2 + (3 + (4 + 0))).
Some more examples: *)
Check (fold andb) : list bool -> bool -> bool.
Example fold_example1 :
fold andb [true;true;false;true] true = false.
Proof. reflexivity. Qed.
Example fold_example2 :
fold mult [1;2;3;4] 1 = 24.
Proof. reflexivity. Qed.
Example fold_example3 :
fold app [[1];[];[2;3];[4]] [] = [1;2;3;4].
Proof. reflexivity. Qed.
(** **** Exercise: 1 star, standard, optional (fold_types_different)
Observe that the type of [fold] is parameterized by _two_ type
variables, [X] and [Y], and the parameter [f] is a binary operator
that takes an [X] and a [Y] and returns a [Y]. Can you think of a
situation where it would be useful for [X] and [Y] to be
different? *)
(* Converting a list of non-strings into string
[] *)
(* ================================================================= *)
(** ** Functions That Construct Functions *)
(** Most of the higher-order functions we have talked about so
far take functions as arguments. Let's look at some examples that
involve _returning_ functions as the results of other functions.
To begin, here is a function that takes a value [x] (drawn from
some type [X]) and returns a function from [nat] to [X] that
yields [x] whenever it is called, ignoring its [nat] argument. *)
Definition constfun {X: Type} (x: X) : nat -> X :=
fun (k:nat) => x.
Definition ftrue := constfun true.
Example constfun_example1 : ftrue 0 = true.
Proof. reflexivity. Qed.
Example constfun_example2 : (constfun 5) 99 = 5.
Proof. reflexivity. Qed.
(** In fact, the multiple-argument functions we have already
seen are also examples of passing functions as data. To see why,
recall the type of [plus]. *)
Check plus : nat -> nat -> nat.
(** Each [->] in this expression is actually a _binary_ operator
on types. This operator is _right-associative_, so the type of
[plus] is really a shorthand for [nat -> (nat -> nat)] -- i.e., it
can be read as saying that "[plus] is a one-argument function that
takes a [nat] and returns a one-argument function that takes
another [nat] and returns a [nat]." In the examples above, we
have always applied [plus] to both of its arguments at once, but
if we like we can supply just the first. This is called _partial
application_. *)
Definition plus3 := plus 3.
Check plus3 : nat -> nat.
Example test_plus3 : plus3 4 = 7.
Proof. reflexivity. Qed.
Example test_plus3' : doit3times plus3 0 = 9.
Proof. reflexivity. Qed.
Example test_plus3'' : doit3times (plus 3) 0 = 9.
Proof. reflexivity. Qed.
(* ################################################################# *)
(** * Additional Exercises *)
Module Exercises.
(** **** Exercise: 2 stars, standard (fold_length)
Many common functions on lists can be implemented in terms of
[fold]. For example, here is an alternative definition of [length]: *)
Definition fold_length {X : Type} (l : list X) : nat :=
fold (fun _ n => S n) l 0.
Example test_fold_length1 : fold_length [4;7;0] = 3.
Proof. reflexivity. Qed.
(** Prove the correctness of [fold_length]. (Hint: It may help to
know that [reflexivity] simplifies expressions a bit more
aggressively than [simpl] does -- i.e., you may find yourself in a
situation where [simpl] does nothing but [reflexivity] solves the
goal.) *)
Theorem fold_length_correct : forall X (l : list X),
fold_length l = length l.
Proof.
intros.
induction l as [|H T IH].
- reflexivity.
- simpl. rewrite <- IH. reflexivity.
Qed.
(** [] *)