-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathprint-qr-correction.py
42 lines (27 loc) · 1.14 KB
/
print-qr-correction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pandas as pd
import numpy as np
import sys
from sklearn.metrics import mean_absolute_error
from sklearn.cross_validation import KFold
from statsmodels.regression.quantile_regression import QuantReg
from util import Dataset
pred_name = sys.argv[1]
n_folds = 8
train_y = Dataset.load_part('train', 'loss')
train_x = pd.read_csv('preds/%s-train.csv' % pred_name)['loss'].values
orig_maes = []
corr_maes = []
for fold, (fold_train_idx, fold_eval_idx) in enumerate(KFold(len(train_y), n_folds, shuffle=True, random_state=2016)):
fold_train_x = train_x[fold_train_idx]
fold_train_y = train_y[fold_train_idx]
fold_eval_x = train_x[fold_eval_idx]
fold_eval_y = train_y[fold_eval_idx]
model = QuantReg(fold_train_y, fold_train_x).fit(q=0.5)
fold_eval_p = model.predict(fold_eval_x)
orig_maes.append(mean_absolute_error(fold_eval_y, fold_eval_x))
corr_maes.append(mean_absolute_error(fold_eval_y, fold_eval_p))
print "Fold %d, orig MAE = %.5f, corr MAE = %.5f" % (fold, orig_maes[-1], corr_maes[-1])
print
print "Avg orig MAE = %.5f" % np.mean(orig_maes)
print "Avg corr MAE = %.5f" % np.mean(corr_maes)
print "Done."