-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathprepare-events.py
32 lines (19 loc) · 967 Bytes
/
prepare-events.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
import numpy as np
import os
from util.meta import cache_dir, input_dir
def encode_feature(values):
uniq = values.unique()
mapping = dict(zip(uniq, range(1, len(uniq) + 1)))
return values.map(mapping)
df = pd.read_csv(os.path.join(input_dir, 'events.csv.zip'), index_col='display_id', dtype={'document_id': np.uint32, 'timestamp': np.uint32})
df['platform'] = df['platform'].replace({'\N': 0}).astype(np.uint8)
location = df['geo_location'].fillna('').str.split('>')
df['country'] = location.map(lambda loc: loc[0] if len(loc) > 0 else 'Z')
df['state'] = location.map(lambda loc: loc[1] if len(loc) > 1 else 'Z')
df['region'] = location.map(lambda loc: int(loc[2]) if len(loc) > 2 else -1)
df["hour"] = (df["timestamp"] // (3600 * 1000)) % 24
df["weekday"] = df["timestamp"] // (3600 * 24 * 1000)
df["uid"] = encode_feature(df["uuid"])
df.to_csv(os.path.join(cache_dir, 'events.csv.gz'), compression='gzip')
print "Done."