forked from horovod/horovod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_mnist.py
110 lines (88 loc) · 4.3 KB
/
tensorflow_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright 2017 Uber Technologies, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#!/usr/bin/env python
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
tf.logging.set_verbosity(tf.logging.INFO)
def conv_model(feature, target, mode):
"""2-layer convolution model."""
# Convert the target to a one-hot tensor of shape (batch_size, 10) and
# with a on-value of 1 for each one-hot vector of length 10.
target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0)
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being
# image width and height final dimension being the number of color channels.
feature = tf.reshape(feature, [-1, 28, 28, 1])
# First conv layer will compute 32 features for each 5x5 patch
with tf.variable_scope('conv_layer1'):
h_conv1 = layers.conv2d(
feature, 32, kernel_size=[5, 5], activation_fn=tf.nn.relu)
h_pool1 = tf.nn.max_pool(
h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Second conv layer will compute 64 features for each 5x5 patch.
with tf.variable_scope('conv_layer2'):
h_conv2 = layers.conv2d(
h_pool1, 64, kernel_size=[5, 5], activation_fn=tf.nn.relu)
h_pool2 = tf.nn.max_pool(
h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# reshape tensor into a batch of vectors
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# Densely connected layer with 1024 neurons.
h_fc1 = layers.dropout(
layers.fully_connected(
h_pool2_flat, 1024, activation_fn=tf.nn.relu),
keep_prob=0.5,
is_training=mode == tf.contrib.learn.ModeKeys.TRAIN)
# Compute logits (1 per class) and compute loss.
logits = layers.fully_connected(h_fc1, 10, activation_fn=None)
loss = tf.losses.softmax_cross_entropy(target, logits)
return tf.argmax(logits, 1), loss
def main(_):
# Initialize Horovod.
hvd.init()
# Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
# Build model...
with tf.name_scope('input'):
image = tf.placeholder(tf.float32, [None, 784], name='image')
label = tf.placeholder(tf.float32, [None], name='label')
predict, loss = conv_model(image, label, tf.contrib.learn.ModeKeys.TRAIN)
opt = tf.train.RMSPropOptimizer(0.01)
# Add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
global_step = tf.contrib.framework.get_or_create_global_step()
train_op = opt.minimize(loss, global_step=global_step)
# BroadcastGlobalVariablesHook broadcasts variables from rank 0 to all other
# processes during initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=100),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
every_n_iter=10),
]
# Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.SingularMonitoredSession(hooks=hooks, config=config) as mon_sess:
while not mon_sess.should_stop():
# Run a training step synchronously.
image_, label_ = mnist.train.next_batch(100)
mon_sess.run(train_op, feed_dict={image: image_, label: label_})
if __name__ == "__main__":
tf.app.run()