-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
46 lines (37 loc) · 1.53 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from model import *
class ContentLoss(nn.Module):
def __init__(self):
super().__init__()
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.feature_extractor = FeatureExtractVGG().cuda().eval()
self.tv_loss =TVLoss()
self.mse_loss = nn.MSELoss()
# self.feature_extractor.eval()
def forward(self,SR_img,HR_img):
SR_feature = self.feature_extractor(SR_img)
HR_feature = self.feature_extractor(HR_img)
loss = F.mse_loss(SR_feature,HR_feature)
loss_tv =self.tv_loss(SR_img)
loss_image = self.mse_loss(SR_img,HR_img)
return 0.006* loss
class AdversarialLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, discriminator_output):
return -torch.log(torch.mean(discriminator_output)+1e-9)
class TVLoss(nn.Module):
def __init__(self, tv_loss_weight=1):
super(TVLoss, self).__init__()
self.tv_loss_weight = tv_loss_weight
def forward(self, x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self.tensor_size(x[:, :, 1:, :])
count_w = self.tensor_size(x[:, :, :, 1:])
h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size
@staticmethod
def tensor_size(t):
return t.size()[1] * t.size()[2] * t.size()[3]