forked from Qiulin-W/SAFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
animation_demo.py
230 lines (184 loc) · 10.5 KB
/
animation_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import matplotlib
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
import copy
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
import torch.nn.functional as F
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from modules.tdmm_estimator import TDMMEstimator
from logger import Logger, Visualizer
from animate import normalize_kp
from scipy.spatial import ConvexHull
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
def load_checkpoints(config_path, checkpoint_path, cpu=False):
with open(config_path) as f:
config = yaml.load(f)
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
tdmm = TDMMEstimator()
if cpu:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
else:
checkpoint = torch.load(checkpoint_path)
generator.cuda()
kp_detector.cuda()
tdmm.cuda()
generator.load_state_dict(checkpoint['generator'])
kp_detector.load_state_dict(checkpoint['kp_detector'])
tdmm.load_state_dict(checkpoint['tdmm'])
generator.eval()
kp_detector.eval()
tdmm.eval()
return generator, kp_detector, tdmm
def make_animation(source_image, driving_video,
generator, kp_detector, tdmm, with_eye=False,
relative=True, adapt_movement_scale=True, cpu=False):
def batch_orth_proj(X, camera):
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:,:,2:]], 2)
shape = X_trans.shape
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
with torch.no_grad():
predictions = []
visualizations = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
if not cpu:
source = source.cuda()
kp_source = kp_detector(source)
source_codedict = tdmm.encode(source)
source_verts, source_transformed_verts, _ = tdmm.decode_flame(source_codedict)
source_albedo = tdmm.extract_texture(source, source_transformed_verts, with_eye=with_eye)
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
driving_initial = driving[:, :, 0].cuda()
kp_driving_initial = kp_detector(driving[:, :, 0].cuda())
driving_init_codedict = tdmm.encode(driving_initial)
driving_init_verts, driving_init_transformed_verts, _ = tdmm.decode_flame(driving_init_codedict)
for frame_idx in tqdm(range(driving.shape[2])):
driving_frame = driving[:, :, frame_idx]
if not cpu:
driving_frame = driving_frame.cuda()
kp_driving = kp_detector(driving_frame)
driving_codedict = tdmm.encode(driving_frame)
# calculate relative 3D motion in the code space
if relative:
delta_shape = source_codedict['shape'] + driving_codedict['shape'] - driving_init_codedict['shape']
delta_exp = source_codedict['exp'] + driving_codedict['exp'] - driving_init_codedict['exp']
delta_pose = source_codedict['pose'] + driving_codedict['pose'] - driving_init_codedict['pose']
else:
delta_shape = source_codedict['shape']
delta_exp = driving_codedict['exp']
delta_pose = driving_codedict['pose']
delta_source_verts, _, _ = tdmm.flame(shape_params=delta_shape,
expression_params=delta_exp,
pose_params=delta_pose)
if relative:
delta_scale = source_codedict['cam'][:, 0:1] * driving_codedict['cam'][:, 0:1] / driving_init_codedict['cam'][:, 0:1]
delta_trans = source_codedict['cam'][:, 1:] + driving_codedict['cam'][:, 1:] - driving_init_codedict['cam'][:, 1:]
else:
delta_scale = driving_codedict['cam'][:, 0:1]
delta_trans = driving_codedict['cam'][:, 1:]
delta_cam = torch.cat([delta_scale, delta_trans], dim=1)
delta_source_transformed_verts = batch_orth_proj(delta_source_verts, delta_cam)
delta_source_transformed_verts[:, :, 1:] = - delta_source_transformed_verts[:, :, 1:]
render_ops = tdmm.render(source_transformed_verts, delta_source_transformed_verts, source_albedo)
# calculate relative kp
kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
out = generator(source, kp_source=kp_source, kp_driving=kp_norm, render_ops=render_ops,
driving_features=driving_codedict)
del out['sparse_deformed']
out['kp_source'] = kp_source
out['kp_driving'] = kp_driving
visualization = Visualizer(kp_size=5, draw_border=True, colormap='gist_rainbow').visualize(source=source,
driving=driving_frame, out=out)
visualizations.append(visualization)
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions, visualizations
def find_best_frame(source, driving, cpu=False):
import face_alignment
def normalize_kp(kp):
kp = kp - kp.mean(axis=0, keepdims=True)
area = ConvexHull(kp[:, :2]).volume
area = np.sqrt(area)
kp[:, :2] = kp[:, :2] / area
return kp
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
device='cpu' if cpu else 'cuda')
kp_source = fa.get_landmarks(255 * source)[0]
kp_source = normalize_kp(kp_source)
norm = float('inf')
frame_num = 0
for i, image in tqdm(enumerate(driving)):
kp_driving = fa.get_landmarks(255 * image)[0]
kp_driving = normalize_kp(kp_driving)
new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
if new_norm < norm:
norm = new_norm
frame_num = i
return frame_num
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore")
parser.add_argument("--source_image_pth", default='', help="path to source image")
parser.add_argument("--driving_video_pth", default='', help="path to driving video")
parser.add_argument("--result_video_pth", default='result.mp4', help="path to output")
parser.add_argument("--result_vis_video_pth", default='result_vis.mp4', help="path to output vis")
parser.add_argument("--with_eye", action="store_true", help="use eye part for extracting texture")
parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates")
parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints")
parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true",
help="Generate from the frame that is the most alligned with source. (Only for faces, requires face_aligment lib)")
parser.add_argument("--best_frame", dest="best_frame", type=int, default=None,
help="Set frame to start from.")
parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.")
parser.set_defaults(relative=False)
parser.set_defaults(adapt_scale=False)
opt = parser.parse_args()
source_image = imageio.imread(opt.source_image_pth)
reader = imageio.get_reader(opt.driving_video_pth)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
source_image = resize(source_image, (256, 256))[..., :3]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
generator, kp_detector, tdmm = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu)
if opt.find_best_frame or opt.best_frame is not None:
i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video, cpu=opt.cpu)
print ("Best frame: " + str(i))
driving_forward = driving_video[i:]
driving_backward = driving_video[:(i+1)][::-1]
predictions_forward, visualizations_forward = make_animation(source_image, driving_forward,
generator, kp_detector, tdmm, with_eye=opt.with_eye,
relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
predictions_backward, visualizations_backward = make_animation(source_image, driving_backward,
generator, kp_detector, tdmm, with_eye=opt.with_eye,
relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
predictions = predictions_backward[::-1] + predictions_forward[1:]
visualizations = visualizations_backward[::-1] + visualizations_forward[1:]
else:
predictions, visualizations = make_animation(source_image, driving_video,
generator, kp_detector, tdmm, with_eye=opt.with_eye,
relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
out_name = os.path.basename(opt.source_image_pth).split('.')[0] + "_" + os.path.basename(opt.driving_video_pth).split('.')[0]
imageio.mimsave(opt.result_video_pth, [img_as_ubyte(frame) for frame in predictions], fps=fps)
imageio.mimsave(opt.result_vis_video_pth, visualizations)