-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathflocking_main.py
63 lines (50 loc) · 1.87 KB
/
flocking_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# implemented by github.com/amirhosseinh77
import numpy as np
import matplotlib.pyplot as plt
from elements.model import MultiAgent, FirstOrderMultiAgent
from elements.assets import *
Nt = 1000
RANGE = 12
DISTANCE = 10
NUMBER_OF_AGENTS = 30
multi_agent_system = MultiAgent(number=NUMBER_OF_AGENTS)
# print(multi_agent_system.agents)
C1_alpha = 3
C2_alpha = 2 * np.sqrt(C1_alpha)
C1_gamma = 5
C2_gamma = 0.2 * np.sqrt(C1_gamma)
# plotting agents
# for t in range(Nt):
while True:
adjacency_matrix = get_adjacency_matrix(multi_agent_system.agents, RANGE)
u = np.zeros((NUMBER_OF_AGENTS,2))
for i in range(NUMBER_OF_AGENTS):
agent_p = multi_agent_system.agents[i,:2]
agent_q = multi_agent_system.agents[i,2:]
# term1
neighbor_idxs = adjacency_matrix[i]
if sum(neighbor_idxs)>1:
neighbors_p = multi_agent_system.agents[neighbor_idxs,:2]
neighbors_q = multi_agent_system.agents[neighbor_idxs,2:]
n_ij = get_n_ij(agent_p, neighbors_p)
term1 = C2_alpha * np.sum(phi_alpha(sigma_norm(neighbors_p-agent_p))*n_ij, axis=0)
# term2
a_ij = get_a_ij(agent_p, neighbors_p)
term2 = C2_alpha * np.sum(a_ij*(neighbors_q-agent_q), axis=0)
# u_alpha
u_alpha = term1 + term2
else:
u_alpha=0
u_gamma = -C1_gamma*sigma_1(agent_p-[50,50]) -C2_gamma*(agent_q-0)
u[i] = u_alpha+u_gamma
multi_agent_system.update_state(u)
plt.cla()
plt.axis([0, 100, 0, 100])
for i in range(NUMBER_OF_AGENTS):
for j in range(NUMBER_OF_AGENTS):
if i!= j and adjacency_matrix[i,j] == 1:
plt.plot(multi_agent_system.agents[[i,j],0], multi_agent_system.agents[[i,j],1])
for i, (x, y,_,_) in enumerate(multi_agent_system.agents):
plt.scatter(x, y, c='black')
plt.pause(0.01)
plt.show()