-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathquery_gpt2.py
124 lines (114 loc) · 4.95 KB
/
query_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import openai
import json
import time
import re
import pandas as pd
import numpy as np
SYSTEM = "You are a helpful assistant for causal reasoning."
NUM_EVALS = None #None # 50
SKIP_PROMPTS = 0
CHATMODELS = ["gpt-35-turbo",'gpt-4', 'gpt-3.5-turbo']
AZURE = True
DELAY = 1
PROMPTS = "prompts"
prompt_suffix = "_" + PROMPTS.split("_")[1] if "_" in PROMPTS else ""
if AZURE:
openai.api_type = "azure"
openai.api_version = "2023-03-15-preview"
openai.api_base = os.getenv("OPENAI_API_BASE") # Your Azure OpenAI resource's endpoint value.
DELAY = 5
def read_prompts(filename):
df = pd.read_csv(filename)
prompts = df[["pair_id", "prompt"]].to_dict('records')
for i in range(len(prompts)):
prompts[i]["prompt"] = prompts[i]["prompt"].replace("\t", "\n")
print(prompts[:2])
return prompts[:NUM_EVALS] if NUM_EVALS is not None else prompts
def query_gpt(prompts, model_name, output_file, system=None):
openai.api_key = os.getenv("OPENAI_API_KEY")
with open(output_file, "w") as fout:
i = 0
while i < len(prompts):
try:
if model_name in CHATMODELS:
messages = []
if system:
messages.append({"role": "system", "content": system})
messages.append({"role": "user", "content": prompts[i]["prompt"]})
if openai.api_type == "azure":
response = openai.ChatCompletion.create(
engine=model_name,
messages=messages,
temperature=0.7)
else:
response = openai.ChatCompletion.create(
model=model_name,
messages=messages,
temperature=0.7)
else:
response = openai.Completion.create(
model=model_name,
prompt=prompts[i]["prompt"],
temperature=1e-3,
max_tokens=512)
#top_p=1,
prompts[i]["result"] = response
print(response)
fout.write(json.dumps(prompts[i]) + "\n")
i += 1
except openai.error.RateLimitError:
print("FACED a rate limit")
time.sleep(10)
time.sleep(DELAY)
def generate_accuracy_results(groundtruth_file, gpt_result_file, result_file):
if NUM_EVALS is None:
csv_results = pd.read_csv(groundtruth_file)
else:
csv_results = pd.read_csv(groundtruth_file).loc[0:(NUM_EVALS-1), :]
labels = ["A" if row["groundtruth"].strip() == "->" else "B"
for _, row in csv_results.iterrows()]
preds, correct_cause = [], []
with open(gpt_result_file) as fin:
cnt = 0
for line in fin:
data = json.loads(line)
if gpt_result_file.find("gpt-3.5-turbo") != -1 or gpt_result_file.find("gpt-4") != -1 or gpt_result_file.find("gpt-35-turbo") != -1:
pred = data["result"]["choices"][0]["message"]["content"].strip().lower()
else:
pred = data["result"]["choices"][0]["text"].strip().lower()
print(pred)
try:
ans = re.search(r"<answer>.*</answer>", pred).group(0)
except AttributeError:
ans = "Error"
#ans = ans.strip("<answer>").rstrip("</answer>")
preds.append(ans)
#numeric_ans = 1 if "yes" in ans else 0 if "no" in ans else -1
numeric_ans = "A" if ">a" in ans else "B" if ">b" in ans else "Error"
y = labels[int(cnt)]
if numeric_ans == "Error":
correct_cause.append(-1)
elif y == numeric_ans:
correct_cause.append(1)
else:
correct_cause.append(0)
cnt += 1
csv_results["CorrectCause"] = correct_cause
accuracy = np.mean(correct_cause)
print("accuracy: ", accuracy)
filt_csv_res = csv_results[(csv_results["CorrectCause"]!=-1)]
accuracy = np.mean(filt_csv_res["CorrectCause"].tolist())
print("accuracy: ", accuracy)
csv_results.to_csv(result_file, index=False)
if __name__ == "__main__":
prompts = read_prompts("prompts.csv")
# model_name = "text-davinci-003"
# for model_name in ["text-davinci-002", "text-davinci-001", "davinci", "ada", "babbage", "text-babbage-001", "text-curie-001", "curie"]:
for model_name in ["gpt-4"]:# ["text-davinci-003"]: #["gpt-3.5-turbo"]:
gpt_output_file = "%s_system_results_singleprompt.jsonl" % model_name
query_gpt(prompts, model_name, gpt_output_file, system=SYSTEM)
groundtruth_file = "results.txt"
gpt_result_file = "%s_system_results_singleprompt.csv" % model_name
print(model_name)
generate_accuracy_results(groundtruth_file, gpt_output_file, gpt_result_file)