forked from abdallahdib/NextFace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorphablemodel.py
254 lines (206 loc) · 13.8 KB
/
morphablemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from utils import loadDictionaryFromPickle, writeDictionaryToPickle
from normalsampler import NormalSampler
from meshnormals import MeshNormals
import numpy as np
import torch
import h5py
import sys
import os
class MorphableModel:
def __init__(self, path, textureResolution = 256, trimPca = False, landmarksPathName = 'landmark_62_mp.txt', device='cuda'):
'''
a statistical morphable model is a generative model that can generate faces with different identity, expression and skin reflectance
it is mainly composed of an orthogonal basis (eigen vectors) obtained from applying principal component analysis (PCA) on a set of face scans.
a linear combination of these eigen vectors produces different type shape and skin
:param path: drive path of where the data of the morphable model is saved
:param textureResolution: the resolution of the texture used for diffuse and specular reflectance
:param trimPca: if True keep only a subset of the PCA basis
:param landmarksPathName: a text file conains the association between the 2d pixel position and the 3D points in the mesh
:param device: where to store the morphableModel data (cpu or gpu)
'''
assert textureResolution == 256 or textureResolution == 512 or textureResolution == 1024 or textureResolution == 2048 #can handle only 256 or 512 texture res
self.shapeBasisSize = 199
self.albedoBasisSize = 145
self.expBasisSize = 100
self.device = device
pathH5Model = path + '/model2017-1_face12_nomouth.h5'
pathAlbedoModel = path + '/albedoModel2020_face12_albedoPart.h5'
pathUV = path + '/uvParametrization.' + str(textureResolution) + '.pickle'
pathLandmarks = path + '/' + landmarksPathName
pathPickleFileName = path + '/morphableModel-2017.pickle'
pathNormals = path + '/normals.pickle'
if os.path.exists(pathPickleFileName) == False:
print("Loading Basel Face Model 2017 from " + pathH5Model + "... this may take a while the first time... The next runtime it will be faster...")
if os.path.exists(pathH5Model) == False:
print('[Error] to use the library, you have to install basel morphable face model 2017 from: https://faces.dmi.unibas.ch/bfm/bfm2017.html', file=sys.stderr, flush=True)
print('Fill the form on the link and you will get instant download link into your inbox.', file=sys.stderr, flush=True)
print('Download "model2017-1_face12_nomouth.h5" and put it inside ',path, ' and run again...', file=sys.stderr, flush=True)
exit(0)
self.file = h5py.File(pathH5Model, 'r')
assert(self.file is not None)
print("loading shape basis...")
self.shapeMean = torch.Tensor(self.file["shape"]["model"]["mean"]).reshape(-1, 3).to(device).float()
self.shapePca = torch.Tensor(self.file["shape"]["model"]["pcaBasis"]).reshape(-1, 3, self.shapeBasisSize).to(device).float().permute(2, 0, 1)
self.shapePcaVar = torch.Tensor(self.file["shape"]["model"]["pcaVariance"]).reshape(self.shapeBasisSize).to(device).float()
print("loading expression basis...")
self.expressionPca = torch.Tensor(self.file["expression"]["model"]["pcaBasis"]).reshape(-1, 3, self.expBasisSize).to(device).float().permute(2, 0, 1)
self.expressionPcaVar = torch.Tensor(self.file["expression"]["model"]["pcaVariance"]).reshape(self.expBasisSize).to(device).float()
self.faces = torch.Tensor(np.transpose(self.file["shape"]["representer"]["cells"])).reshape(-1, 3).to(device).long()
self.file.close()
print("Loading Albedo model from " + pathAlbedoModel + "...")
if os.path.exists(pathAlbedoModel) == False:
print('[ERROR] Please install the albedo model from the link below, put it inside', path, 'and run again: https://github.com/waps101/AlbedoMM/releases/download/v1.0/albedoModel2020_face12_albedoPart.h5', file=sys.stderr, flush=True)
exit(0)
self.file = h5py.File(pathAlbedoModel, 'r')
assert(self.file is not None)
self.diffuseAlbedoMean = torch.Tensor(self.file["diffuseAlbedo"]["model"]["mean"]).reshape(-1, 3).to(device).float()
self.diffuseAlbedoPca = torch.Tensor(self.file["diffuseAlbedo"]["model"]["pcaBasis"]).reshape(-1, 3, self.albedoBasisSize).to(device).float().permute(2, 0, 1)
self.diffuseAlbedoPcaVar = torch.Tensor(self.file["diffuseAlbedo"]["model"]["pcaVariance"]).reshape(self.albedoBasisSize).to(device).float()
self.specularAlbedoMean = torch.Tensor(self.file["specularAlbedo"]["model"]["mean"]).reshape(-1, 3).to(device).float()
self.specularAlbedoPca = torch.Tensor(self.file["specularAlbedo"]["model"]["pcaBasis"]).reshape(-1, 3, self.albedoBasisSize).to(device).float().permute(2, 0, 1)
self.specularAlbedoPcaVar = torch.Tensor(self.file["specularAlbedo"]["model"]["pcaVariance"]).reshape(self.albedoBasisSize).to(device).float()
self.file.close()
#save to pickle for future loading
dict = {'shapeMean': self.shapeMean.cpu().numpy(),
'shapePca': self.shapePca.cpu().numpy(),
'shapePcaVar': self.shapePcaVar.cpu().numpy(),
'diffuseAlbedoMean': self.diffuseAlbedoMean.cpu().numpy(),
'diffuseAlbedoPca': self.diffuseAlbedoPca.cpu().numpy(),
'diffuseAlbedoPcaVar': self.diffuseAlbedoPcaVar.cpu().numpy(),
'specularAlbedoMean': self.specularAlbedoMean.cpu().numpy(),
'specularAlbedoPca': self.specularAlbedoPca.cpu().numpy(),
'specularAlbedoPcaVar': self.specularAlbedoPcaVar.cpu().numpy(),
'expressionPca': self.expressionPca.cpu().numpy(),
'expressionPcaVar': self.expressionPcaVar.cpu().numpy(),
'faces': self.faces.cpu().numpy()}
writeDictionaryToPickle(dict, pathPickleFileName)
else:
print("Loading Basel Face Model 2017 from " + pathPickleFileName + "...")
dict = loadDictionaryFromPickle(pathPickleFileName)
self.shapeMean = torch.tensor(dict['shapeMean']).to(device)
self.shapePca = torch.tensor(dict['shapePca']).to(device)
self.shapePcaVar = torch.tensor(dict['shapePcaVar']).to(device)
self.diffuseAlbedoMean = torch.tensor(dict['diffuseAlbedoMean']).to(device)
self.diffuseAlbedoPca = torch.tensor(dict['diffuseAlbedoPca']).to(device)
self.diffuseAlbedoPcaVar = torch.tensor(dict['diffuseAlbedoPcaVar']).to(device)
self.specularAlbedoMean = torch.tensor(dict['specularAlbedoMean']).to(device)
self.specularAlbedoPca = torch.tensor(dict['specularAlbedoPca']).to(device)
self.specularAlbedoPcaVar = torch.tensor(dict['specularAlbedoPcaVar']).to(device)
self.expressionPca = torch.tensor(dict['expressionPca']).to(device)
self.expressionPcaVar = torch.tensor(dict['expressionPcaVar']).to(device)
self.faces = torch.tensor(dict['faces']).to(device)
if trimPca:
newDim = min(80,
self.shapePca.shape[0],
self.diffuseAlbedoPca.shape[0],
self.specularAlbedoPcaVar.shape[0],
self.expressionPca.shape[0])
self.shapePca = self.shapePca[0:newDim, ...]
self.shapePcaVar = self.shapePcaVar[0:newDim, ...]
self.diffuseAlbedoPca = self.diffuseAlbedoPca[0:newDim, ...]
self.diffuseAlbedoPcaVar = self.diffuseAlbedoPcaVar[0:newDim, ...]
self.specularAlbedoPca = self.specularAlbedoPca[0:newDim, ...]
self.specularAlbedoPcaVar = self.specularAlbedoPcaVar[0:newDim, ...]
self.expressionPca = self.expressionPca[0:newDim, ...]
self.expressionPcaVar = self.expressionPcaVar[0:newDim, ...]
self.shapeBasisSize = newDim
self.expBasisSize = newDim
self.albedoBasisSize = newDim
print("loading mesh normals...")
dic = loadDictionaryFromPickle(pathNormals)
self.meshNormals = MeshNormals(device, self.faces, dic['vertexIndex'], dic['vertexFaceNeighbors'])
print("loading uv parametrization...")
self.uvParametrization = loadDictionaryFromPickle(pathUV)
for key in self.uvParametrization:
if key != 'uvResolution':
self.uvParametrization[key] = torch.tensor(self.uvParametrization[key]).to(device)
self.uvMap = self.uvParametrization['uvVertices'].to(device)
print("loading landmarks association file...")
self.landmarksAssociation = torch.tensor(np.loadtxt(pathLandmarks, delimiter='\t\t')[:, 1].astype(np.int64)).to(device)
self.landmarksMask = torch.tensor(np.loadtxt(pathLandmarks, delimiter='\t\t')[:, 0].astype(np.int64)).to(device)
print('creating sampler...')
self.sampler = NormalSampler(self)
def generateTextureFromAlbedo(self, albedo):
'''
generate diffuse and specular textures from per vertex albedo color
:param albedo: tensor of per vertex albedo color [n, verticesNumber, 3]
:return: generated textures [n, self.getTextureResolution(), self.getTextureResolution(), 3]
'''
assert (albedo.dim() == 3 and albedo.shape[-1] == self.diffuseAlbedoMean.shape[-1] and albedo.shape[-2] == self.diffuseAlbedoMean.shape[-2])
textureSize = self.uvParametrization['uvResolution']
halfRes = textureSize // 2
baryCenterWeights = self.uvParametrization['uvFaces']
oFaces = self.uvParametrization['uvMapFaces']
uvxyMap = self.uvParametrization['uvXYMap']
neighboors = torch.arange(self.faces.shape[-1], dtype = torch.int64, device = self.faces.device)
texture = (baryCenterWeights[:, neighboors, None] * albedo[:, self.faces[oFaces[:, None], neighboors]]).sum(dim=-2)
textures = torch.zeros((albedo.size(0), textureSize, textureSize, 3), dtype=torch.float32, device = self.faces.device)
textures[:, uvxyMap[:, 0], uvxyMap[:, 1]] = texture
textures[:, halfRes, :, :] = (textures[:, halfRes -1, :, :] + textures[:, halfRes + 1, :, :]) * 0.5
return textures.permute(0, 2, 1, 3).flip([1])
def getTextureResolution(self):
'''
return the resolution of the texture
:return: int scalar
'''
return self.uvParametrization['uvResolution']
def computeShape(self, shapeCoff, expCoff):
'''
compute vertices from shape and exp coeff
:param shapeCoff: [n, self.shapeBasisSize]
:param expCoff: [n, self.expBasisSize]
:return: return vertices tensor [n, verticesNumber, 3]
'''
assert (shapeCoff.dim() == 2 and shapeCoff.shape[1] == self.shapeBasisSize)
assert (expCoff.dim() == 2 and expCoff.shape[1] == self.expBasisSize)
vertices = self.shapeMean + torch.einsum('ni,ijk->njk', (shapeCoff, self.shapePca)) + torch.einsum('ni,ijk->njk', (expCoff, self.expressionPca))
return vertices
def computeNormals(self, vertices):
'''
compute normals for given vertices tensor
:param vertices: float tensor [..., 3]
:return: float tensor [..., 3]
'''
assert(vertices.shape[-1] == 3)
return self.meshNormals.computeNormals(vertices)
def computeDiffuseAlbedo(self, diffAlbedoCoeff):
'''
compute diffuse albedo from coeffs
:param diffAlbedoCoeff: tensor [n, self.albedoBasisSize]
:return: diffuse colors per vertex [n, verticesNumber, 3]
'''
assert(diffAlbedoCoeff.dim() == 2 and diffAlbedoCoeff.shape[1] == self.albedoBasisSize)
colors = self.diffuseAlbedoMean + torch.einsum('ni,ijk->njk', (diffAlbedoCoeff, self.diffuseAlbedoPca))
return colors
def computeSpecularAlbedo(self, specAlbedoCoeff):
'''
compute specular albedo from coeffs
:param specAlbedoCoeff: [n, self.albedoBasisSize]
:return: specular colors per vertex [n, verticesNumber, 3]
'''
assert(specAlbedoCoeff.dim() == 2 and specAlbedoCoeff.shape[1] == self.albedoBasisSize)
colors = self.specularAlbedoMean + torch.einsum('ni,ijk->njk', (specAlbedoCoeff, self.specularAlbedoPca))
return colors
def computeShapeAlbedo(self, shapeCoeff, expCoeff, albedoCoeff):
'''
compute vertices and diffuse/specular albedo from shape, exp and albedo coeff
:param shapeCoeff: tensor [n, self.shapeBasisSize]
:param expCoeff: tensor [n, self.expBasisSize]
:param albedoCoeff: tensor [n, self.albedoBasisSize]
:return: vertices [n, verticesNumber 3], diffuse albedo [n, verticesNumber 3], specAlbedo albedo [n, verticesNumber 3]
'''
vertices = self.computeShape(shapeCoeff, expCoeff)
diffAlbedo = self.computeDiffuseAlbedo(albedoCoeff)
specAlbedo = self.computeSpecularAlbedo(albedoCoeff)
return vertices, diffAlbedo, specAlbedo
def sample(self, shapeNumber = 1):
'''
random sample shape, expression, diffuse and specular albedo coeffs
:param shapeNumber: number of shapes to sample
:return: shapeCoeff [n, self.shapeBasisSize], expCoeff [n, self.expBasisSize], diffCoeff [n, albedoBasisSize], specCoeff [n, self.albedoBasisSize]
'''
shapeCoeff = self.sampler.sample(shapeNumber, self.shapePcaVar)
expCoeff = self.sampler.sample(shapeNumber, self.expressionPcaVar)
diffAlbedoCoeff = self.sampler.sample(shapeNumber, self.diffuseAlbedoPcaVar)
specAlbedoCoeff = self.sampler.sample(shapeNumber, self.specularAlbedoPcaVar)
return shapeCoeff, expCoeff, diffAlbedoCoeff, specAlbedoCoeff