forked from abdallahdib/NextFace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
495 lines (408 loc) · 27.4 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from image import Image, ImageFolder, overlayImage, saveImage
from gaussiansmoothing import GaussianSmoothing, smoothImage
from projection import estimateCameraPosition
from textureloss import TextureLoss
from pipeline import Pipeline
from config import Config
from utils import *
import argparse
import pickle
import tqdm
import sys
class Optimizer:
def __init__(self, outputDir, config):
self.config = config
self.device = config.device
self.verbose = config.verbose
self.framesNumber = 0
self.pipeline = Pipeline(self.config)
if self.config.lamdmarksDetectorType == 'fan':
from landmarksfan import LandmarksDetectorFAN
self.landmarksDetector = LandmarksDetectorFAN(self.pipeline.morphableModel.landmarksMask, self.device)
elif self.config.lamdmarksDetectorType == 'mediapipe':
from landmarksmediapipe import LandmarksDetectorMediapipe
self.landmarksDetector = LandmarksDetectorMediapipe(self.pipeline.morphableModel.landmarksMask, self.device)
else:
raise ValueError(f'lamdmarksDetectorType must be one of [mediapipe, fan] but was {self.config.lamdmarksDetectorType}')
self.textureLoss = TextureLoss(self.device)
self.inputImage = None
self.landmarks = None
torch.set_grad_enabled(False)
self.smoothing = GaussianSmoothing(3, 3, 1.0, 2).to(self.device)
self.outputDir = outputDir + '/'
self.debugDir = self.outputDir + '/debug/'
mkdir_p(self.outputDir)
mkdir_p(self.debugDir)
mkdir_p(self.outputDir + '/checkpoints/')
self.vEnhancedDiffuse = None
self.vEnhancedSpecular = None
self.vEnhancedRoughness = None
def saveParameters(self, outputFileName):
dict = {
'vShapeCoeff': self.pipeline.vShapeCoeff.detach().cpu().numpy(),
'vAlbedoCoeff': self.pipeline.vAlbedoCoeff.detach().cpu().numpy(),
'vExpCoeff': self.pipeline.vExpCoeff.detach().cpu().numpy(),
'vRotation': self.pipeline.vRotation.detach().cpu().numpy(),
'vTranslation': self.pipeline.vTranslation.detach().cpu().numpy(),
'vFocals': self.pipeline.vFocals.detach().cpu().numpy(),
'vShCoeffs': self.pipeline.vShCoeffs.detach().cpu().numpy(),
'screenWidth':self.pipeline.renderer.screenWidth,
'screenHeight': self.pipeline.renderer.screenHeight,
'sharedIdentity': self.pipeline.sharedIdentity
}
if self.vEnhancedDiffuse is not None:
dict['vEnhancedDiffuse'] = self.vEnhancedDiffuse.detach().cpu().numpy()
if self.vEnhancedSpecular is not None:
dict['vEnhancedSpecular'] = self.vEnhancedSpecular.detach().cpu().numpy()
if self.vEnhancedRoughness is not None:
dict['vEnhancedRoughness'] = self.vEnhancedRoughness.detach().cpu().numpy()
handle = open(outputFileName, 'wb')
pickle.dump(dict, handle, pickle.HIGHEST_PROTOCOL)
handle.close()
def loadParameters(self, pickelFileName):
handle = open(pickelFileName, 'rb')
assert handle is not None
dict = pickle.load(handle)
self.pipeline.vShapeCoeff = torch.tensor(dict['vShapeCoeff']).to(self.device)
self.pipeline.vAlbedoCoeff = torch.tensor(dict['vAlbedoCoeff']).to(self.device)
self.pipeline.vExpCoeff = torch.tensor(dict['vExpCoeff']).to(self.device)
self.pipeline.vRotation = torch.tensor(dict['vRotation']).to(self.device)
self.pipeline.vTranslation = torch.tensor(dict['vTranslation']).to(self.device)
self.pipeline.vFocals = torch.tensor(dict['vFocals']).to(self.device)
self.pipeline.vShCoeffs = torch.tensor(dict['vShCoeffs']).to(self.device)
self.pipeline.renderer.screenWidth = int(dict['screenWidth'])
self.pipeline.renderer.screenHeight = int(dict['screenHeight'])
self.pipeline.sharedIdentity = bool(dict['sharedIdentity'])
if "vEnhancedDiffuse" in dict:
self.vEnhancedDiffuse = torch.tensor(dict['vEnhancedDiffuse']).to(self.device)
if "vEnhancedSpecular" in dict:
self.vEnhancedSpecular = torch.tensor(dict['vEnhancedSpecular']).to(self.device)
if "vEnhancedRoughness" in dict:
self.vEnhancedRoughness = torch.tensor(dict['vEnhancedRoughness']).to(self.device)
handle.close()
self.enableGrad()
def enableGrad(self):
self.pipeline.vShapeCoeff.requires_grad = True
self.pipeline.vAlbedoCoeff.requires_grad = True
self.pipeline.vExpCoeff.requires_grad = True
self.pipeline.vRotation.requires_grad = True
self.pipeline.vTranslation.requires_grad = True
self.pipeline.vFocals.requires_grad = True
self.pipeline.vShCoeffs.requires_grad = True
def setImage(self, imagePath, sharedIdentity = False):
'''
set image to estimate face reflectance and geometry
:param imagePath: drive path to the image
:param sharedIdentity: if true than the shape and albedo coeffs are equal to 1, as they belong to the same person identity
:return:
'''
if os.path.isfile(imagePath):
self.inputImage = Image(imagePath, self.device, self.config.maxResolution)
else:
self.inputImage = ImageFolder(imagePath, self.device, self.config.maxResolution)
self.framesNumber = self.inputImage.tensor.shape[0]
#self.inputImage = Image(imagePath, self.device)
self.pipeline.renderer.screenWidth = self.inputImage.width
self.pipeline.renderer.screenHeight = self.inputImage.height
print('detecting landmarks using:', self.config.lamdmarksDetectorType)
landmarks = self.landmarksDetector.detect(self.inputImage.tensor)
#assert (landmarks.shape[0] == 1) # can only handle single subject in image
assert (landmarks.dim() == 3 and landmarks.shape[2] == 2)
self.landmarks = landmarks
for i in range(self.framesNumber):
imagesLandmark = self.landmarksDetector.drawLandmarks(self.inputImage.tensor[i], self.landmarks[i])
cv2.imwrite(self.outputDir + '/landmarks' + str(i) + '.png', cv2.cvtColor(imagesLandmark, cv2.COLOR_BGR2RGB) )
self.pipeline.initSceneParameters(self.framesNumber, sharedIdentity)
self.initCameraPos() #always init the head pose (rotation + translation)
self.enableGrad()
def initCameraPos(self):
print('init camera pose...', file=sys.stderr, flush=True)
association = self.pipeline.morphableModel.landmarksAssociation
vertices = self.pipeline.computeShape()
headPoints = vertices[:, association]
rot, trans = estimateCameraPosition(self.pipeline.vFocals, self.inputImage.center,
self.landmarks, headPoints, self.pipeline.vRotation,
self.pipeline.vTranslation)
self.pipeline.vRotation = rot.clone().detach()
self.pipeline.vTranslation = trans.clone().detach()
def getTextureIndex(self, i):
if self.pipeline.sharedIdentity:
return 0
return i
def debugFrame(self, image, target, diffuseTexture, specularTexture, roughnessTexture, outputPrefix):
for i in range(image.shape[0]):
diff = (image[i] - target[i]).abs()
import cv2
diffuse = cv2.resize(cv2.cvtColor(diffuseTexture[self.getTextureIndex(i)].detach().cpu().numpy(), cv2.COLOR_BGR2RGB), (target.shape[2], target.shape[1]))
spec = cv2.resize(cv2.cvtColor(specularTexture[self.getTextureIndex(i)].detach().cpu().numpy(), cv2.COLOR_BGR2RGB), (target.shape[2], target.shape[1]))
rough = roughnessTexture[self.getTextureIndex(i)].detach().cpu().numpy()
rough = cv2.cvtColor(cv2.resize(rough, (target.shape[2], target.shape[1])), cv2.COLOR_GRAY2RGB)
res = cv2.hconcat([cv2.cvtColor(image[i].detach().cpu().numpy(), cv2.COLOR_BGR2RGB),
cv2.cvtColor(target[i].detach().cpu().numpy(), cv2.COLOR_BGR2RGB),
cv2.cvtColor(diff.detach().cpu().numpy(), cv2.COLOR_BGR2RGB)])
ref = cv2.hconcat([diffuse, spec, rough])
debugFrame = cv2.vconcat([np.power(np.clip(res, 0.0, 1.0), 1.0 / 2.2) * 255, ref * 255])
cv2.imwrite(outputPrefix + '_frame' + str(i) + '.png', debugFrame)
def regStatModel(self, coeff, var):
loss = ((coeff * coeff) / var).mean()
return loss
def plotLoss(self, lossArr, index, fileName):
import matplotlib.pyplot as plt
plt.figure(index)
plt.plot(lossArr)
plt.scatter(np.arange(0, len(lossArr)).tolist(), lossArr, c='red')
plt.savefig(fileName)
def landmarkLoss(self, cameraVertices, landmarks):
return self.pipeline.landmarkLoss(cameraVertices, landmarks, self.pipeline.vFocals, self.inputImage.center)
def runStep1(self):
print("1/3 => Optimizing head pose and expressions using landmarks...", file=sys.stderr, flush=True)
torch.set_grad_enabled(True)
params = [
{'params': self.pipeline.vRotation, 'lr': 0.02},
{'params': self.pipeline.vTranslation, 'lr': 0.02},
{'params': self.pipeline.vExpCoeff, 'lr': 0.02},
#{'params': self.pipeline.vShapeCoeff, 'lr': 0.02}
]
if self.config.optimizeFocalLength:
params.append({'params': self.pipeline.vFocals, 'lr': 0.02})
optimizer = torch.optim.Adam(params)
losses = []
#for iter in range(2000):
for iter in tqdm.tqdm(range(self.config.iterStep1)):
optimizer.zero_grad()
vertices = self.pipeline.computeShape()
cameraVertices = self.pipeline.transformVertices(vertices)
loss = self.landmarkLoss(cameraVertices, self.landmarks)
loss += 0.1 * self.regStatModel(self.pipeline.vExpCoeff, self.pipeline.morphableModel.expressionPcaVar)
loss.backward()
optimizer.step()
losses.append(loss.item())
if self.verbose:
print(iter, '=>', loss.item())
self.plotLoss(losses, 0, self.outputDir + 'checkpoints/stage1_loss.png')
self.saveParameters(self.outputDir + 'checkpoints/stage1_output.pickle')
def runStep2(self):
print("2/3 => Optimizing shape, statistical albedos, expression, head pose and scene light...", file=sys.stderr, flush=True)
torch.set_grad_enabled(True)
self.pipeline.renderer.samples = 8
inputTensor = torch.pow(self.inputImage.tensor, self.inputImage.gamma)
optimizer = torch.optim.Adam([
{'params': self.pipeline.vShCoeffs, 'lr': 0.005},
{'params': self.pipeline.vAlbedoCoeff, 'lr': 0.007}
])
losses = []
for iter in tqdm.tqdm(range(self.config.iterStep2 + 1)):
if iter == 100:
optimizer.add_param_group({'params': self.pipeline.vShapeCoeff, 'lr': 0.01})
optimizer.add_param_group({'params': self.pipeline.vExpCoeff, 'lr': 0.01})
optimizer.add_param_group({'params': self.pipeline.vRotation, 'lr': 0.0001})
optimizer.add_param_group({'params': self.pipeline.vTranslation, 'lr': 0.0001})
optimizer.zero_grad()
vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff)
cameraVerts = self.pipeline.camera.transformVertices(vertices, self.pipeline.vTranslation, self.pipeline.vRotation)
diffuseTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(diffAlbedo)
specularTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(specAlbedo)
images = self.pipeline.render(cameraVerts, diffuseTextures, specularTextures)
mask = images[..., 3:]
smoothedImage = smoothImage(images[..., 0:3], self.smoothing)
diff = mask * (smoothedImage - inputTensor).abs()
#photoLoss = diff.mean(dim=-1).sum() / float(self.framesNumber)
photoLoss = 1000.* diff.mean()
landmarksLoss = self.config.weightLandmarksLossStep2 * self.landmarkLoss(cameraVerts, self.landmarks)
regLoss = 0.0001 * self.pipeline.vShCoeffs.pow(2).mean()
regLoss += self.config.weightAlbedoReg * self.regStatModel(self.pipeline.vAlbedoCoeff, self.pipeline.morphableModel.diffuseAlbedoPcaVar)
regLoss += self.config.weightShapeReg * self.regStatModel(self.pipeline.vShapeCoeff, self.pipeline.morphableModel.shapePcaVar)
regLoss += self.config.weightExpressionReg * self.regStatModel(self.pipeline.vExpCoeff, self.pipeline.morphableModel.expressionPcaVar)
loss = photoLoss + landmarksLoss + regLoss
losses.append(loss.item())
loss.backward()
optimizer.step()
if self.verbose:
print(iter, ' => Loss:', loss.item(),
'. photo Loss:', photoLoss.item(),
'. landmarks Loss: ', landmarksLoss.item(),
'. regLoss: ', regLoss.item())
if self.config.debugFrequency > 0 and iter % self.config.debugFrequency == 0:
self.debugFrame(smoothedImage, inputTensor, diffuseTextures, specularTextures, self.pipeline.vRoughness, self.debugDir + 'debug1_iter' + str(iter))
self.plotLoss(losses, 1, self.outputDir + 'checkpoints/stage2_loss.png')
self.saveParameters(self.outputDir + 'checkpoints/stage2_output.pickle')
def runStep3(self):
print("3/3 => finetuning albedos, shape, expression, head pose and scene light...", file=sys.stderr, flush=True)
torch.set_grad_enabled(True)
self.pipeline.renderer.samples = 8
inputTensor = torch.pow(self.inputImage.tensor, self.inputImage.gamma)
vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff)
vDiffTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(diffAlbedo).detach().clone() if self.vEnhancedDiffuse is None else self.vEnhancedDiffuse.detach().clone()
vSpecTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(specAlbedo).detach().clone() if self.vEnhancedSpecular is None else self.vEnhancedSpecular.detach().clone()
vRoughTextures = self.pipeline.vRoughness.detach().clone() if self.vEnhancedRoughness is None else self.vEnhancedRoughness.detach().clone()
refDiffTextures = vDiffTextures.detach().clone()
refSpecTextures = vSpecTextures.detach().clone()
refRoughTextures = vRoughTextures.detach().clone()
vDiffTextures.requires_grad = True
vSpecTextures.requires_grad = True
vRoughTextures.requires_grad = True
optimizer = torch.optim.Adam([
{'params': vDiffTextures, 'lr': 0.005},
{'params': vSpecTextures, 'lr': 0.02},
{'params': vRoughTextures, 'lr': 0.02}
])
''''
{'params': self.pipeline.vShCoeffs, 'lr': 0.005 * 2.},
{'params': self.pipeline.vShapeCoeff, 'lr': 0.01},
{'params': self.pipeline.vExpCoeff, 'lr': 0.01},
{'params': self.pipeline.vRotation, 'lr': 0.0005},
{'params': self.pipeline.vTranslation, 'lr': 0.0005}'''
losses = []
for iter in tqdm.tqdm(range(self.config.iterStep3 + 1)):
optimizer.zero_grad()
vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff)
cameraVerts = self.pipeline.camera.transformVertices(vertices, self.pipeline.vTranslation, self.pipeline.vRotation)
images = self.pipeline.render(cameraVerts, vDiffTextures, vSpecTextures, vRoughTextures)
mask = images[..., 3:]
smoothedImage = smoothImage(images[..., 0:3], self.smoothing)
diff = mask * (smoothedImage - inputTensor).abs()
#loss = diff.mean(dim=-1).sum() / float(self.framesNumber)
loss = 1000.0 * diff.mean()
loss += 0.2 * (self.textureLoss.regTextures(vDiffTextures, refDiffTextures, ws = self.config.weightDiffuseSymmetryReg, wr = self.config.weightDiffuseConsistencyReg, wc = self.config.weightDiffuseConsistencyReg, wsm = self.config.weightDiffuseSmoothnessReg, wm = 0.) + \
self.textureLoss.regTextures(vSpecTextures, refSpecTextures, ws = self.config.weightSpecularSymmetryReg, wr = self.config.weightSpecularConsistencyReg, wc = self.config.weightSpecularConsistencyReg, wsm = self.config.weightSpecularSmoothnessReg, wm = 0.5) + \
self.textureLoss.regTextures(vRoughTextures, refRoughTextures, ws = self.config.weightRoughnessSymmetryReg, wr = self.config.weightRoughnessConsistencyReg, wc = self.config.weightRoughnessConsistencyReg, wsm = self.config.weightRoughnessSmoothnessReg, wm = 0.))
loss += 0.0001 * self.pipeline.vShCoeffs.pow(2).mean()
loss += self.config.weightExpressionReg * self.regStatModel(self.pipeline.vExpCoeff, self.pipeline.morphableModel.expressionPcaVar)
loss += self.config.weightShapeReg * self.regStatModel(self.pipeline.vShapeCoeff, self.pipeline.morphableModel.shapePcaVar)
loss += self.config.weightLandmarksLossStep3 * self.landmarkLoss(cameraVerts, self.landmarks)
losses.append(loss.item())
loss.backward()
optimizer.step()
if self.verbose:
print(iter, ' => Loss:', loss.item())
if self.config.debugFrequency > 0 and iter % self.config.debugFrequency == 0:
self.debugFrame(smoothedImage, inputTensor, vDiffTextures, vSpecTextures, vRoughTextures, self.debugDir + 'debug2_iter' + str(iter))
self.plotLoss(losses, 2, self.outputDir + 'checkpoints/stage3_loss.png')
self.vEnhancedDiffuse = vDiffTextures.detach().clone()
self.vEnhancedSpecular = vSpecTextures.detach().clone()
self.vEnhancedRoughness = vRoughTextures.detach().clone()
self.saveParameters(self.outputDir + 'checkpoints/stage3_output.pickle')
def saveOutput(self, samples, outputDir = None, prefix = ''):
if outputDir is None:
outputDir = self.outputDir
mkdir_p(outputDir)
print("saving to: '", outputDir, "'. hold on... ", file=sys.stderr, flush=True)
outputDir += '/' #use join
inputTensor = torch.pow(self.inputImage.tensor, self.inputImage.gamma)
vDiffTextures = self.vEnhancedDiffuse
vSpecTextures = self.vEnhancedSpecular
vRoughTextures = self.vEnhancedRoughness
vertices, diffAlbedo, specAlbedo = self.pipeline.morphableModel.computeShapeAlbedo(self.pipeline.vShapeCoeff, self.pipeline.vExpCoeff, self.pipeline.vAlbedoCoeff)
cameraVerts = self.pipeline.camera.transformVertices(vertices, self.pipeline.vTranslation, self.pipeline.vRotation)
cameraNormals = self.pipeline.morphableModel.computeNormals(cameraVerts)
if vDiffTextures is None:
vDiffTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(diffAlbedo)
vSpecTextures = self.pipeline.morphableModel.generateTextureFromAlbedo(specAlbedo)
vRoughTextures = self.pipeline.vRoughness
self.pipeline.renderer.samples = samples
images = self.pipeline.render(None, vDiffTextures, vSpecTextures, vRoughTextures)
diffuseAlbedo = self.pipeline.render(diffuseTextures=vDiffTextures, renderAlbedo=True)
specularAlbedo = self.pipeline.render(diffuseTextures=vSpecTextures, renderAlbedo=True)
roughnessAlbedo = self.pipeline.render(diffuseTextures=vRoughTextures.repeat(1, 1, 1, 3), renderAlbedo=True)
illum = self.pipeline.render(diffuseTextures=torch.ones_like(vDiffTextures), specularTextures=torch.zeros_like(vDiffTextures))
for i in range(diffuseAlbedo.shape[0]):
saveObj(outputDir + prefix + '/mesh' + str(i) + '.obj',
'material' + str(i) + '.mtl',
cameraVerts[i],
self.pipeline.faces32,
cameraNormals[i],
self.pipeline.morphableModel.uvMap,
prefix + 'diffuseMap_' + str(self.getTextureIndex(i)) + '.png')
envMaps = self.pipeline.sh.toEnvMap(self.pipeline.vShCoeffs, self.config.smoothSh) #smooth
ext = '.png'
if self.config.saveExr:
ext = '.exr'
saveImage(envMaps[i], outputDir + '/envMap_' + str(i) + ext)
#saveImage(diffuseAlbedo[self.getTextureIndex(i)], outputDir + prefix + 'diffuse_' + str(self.getTextureIndex(i)) + '.png')
#saveImage(specularAlbedo[self.getTextureIndex(i)], outputDir + prefix + 'specular_' + str(self.getTextureIndex(i)) + '.png')
#saveImage(roughnessAlbedo[self.getTextureIndex(i)], outputDir + prefix + 'roughness_' + str(self.getTextureIndex(i)) + '.png')
#saveImage(illum[i], outputDir + prefix + 'illumination_' + str(i) + '.png')
#saveImage(images[i], outputDir + prefix + 'finalReconstruction_' + str(i) + '.png')
overlay = overlayImage(inputTensor[i], images[i])
#saveImage(overlay, outputDir + '/overlay_' + str(i) + '.png')
renderAll = torch.cat([torch.cat([inputTensor[i], torch.ones_like(images[i])[..., 3:]], dim = -1),
torch.cat([overlay.to(self.device), torch.ones_like(images[i])[..., 3:]], dim = -1),
images[i],
illum[i],
diffuseAlbedo[self.getTextureIndex(i)],
specularAlbedo[self.getTextureIndex(i)],
roughnessAlbedo[self.getTextureIndex(i)]], dim=1)
saveImage(renderAll, outputDir + '/render_' + str(i) + '.png')
saveImage(vDiffTextures[self.getTextureIndex(i)], outputDir + prefix + 'diffuseMap_' + str(self.getTextureIndex(i)) + '.png')
saveImage(vSpecTextures[self.getTextureIndex(i)], outputDir + prefix + 'specularMap_' + str(self.getTextureIndex(i)) + '.png')
saveImage(vRoughTextures[self.getTextureIndex(i)].repeat(1, 1, 3), outputDir + prefix + 'roughnessMap_' + str(self.getTextureIndex(i)) + '.png')
def run(self, imagePathOrDir, sharedIdentity = False, checkpoint = None, doStep1 = True, doStep2 = True, doStep3 = True):
'''
run optimization on given path (can be a directory that contains images with same resolution or a direct path to an image)
:param imagePathOrDir: a path to a directory or image
:param sharedIdentity: if True, the images in the directory belongs to the same subject so the shape identity and skin reflectance are shared across all images
:param checkpoint: a path to a checkpoint file (pickle) to resume optim (check saveParameters and loadParameters)
:param doStep1: if True do stage 1 optim (landmarks loss)
:param doStep2: if True do stage 2 optim (photo loss on statistical prior)
:param doStep3: if True do stage 3 optim ( refine albedos)
:return:
'''
self.setImage(imagePathOrDir, sharedIdentity)
assert(self.framesNumber >= 1) #could not load any image from path
if checkpoint is not None and checkpoint != '':
print('resuming optimization from checkpoint: ',checkpoint, file=sys.stderr, flush=True)
self.loadParameters(checkpoint)
import time
start = time.time()
if doStep1:
self.runStep1()
if self.config.saveIntermediateStage:
self.saveOutput(self.config.rtSamples, self.outputDir + '/outputStage1', prefix='stage1_')
if doStep2:
self.runStep2()
if self.config.saveIntermediateStage:
self.saveOutput(self.config.rtSamples, self.outputDir + '/outputStage2', prefix='stage2_')
if doStep3:
self.runStep3()
end = time.time()
print("took {:.2f} minutes to optimize".format((end - start) / 60.), file=sys.stderr, flush=True)
self.saveOutput(self.config.rtSamples, self.outputDir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input", required=False, default='./input/s1.png', help="path to a directory or image to reconstruct (images in same directory should have the same resolution")
parser.add_argument("--sharedIdentity", dest='sharedIdentity', action='store_true', help='in case input directory contains multiple images, this flag tells the optimizations that all images are for the same person ( that means the identity shape and skin reflectance is common for all images), if this flag is false, that each image belong to a different subject', required=False)
#parser.add_argument("--no-sharedIdentity", dest='sharedIdentity', action='store_false', help='in case input directory contains multiple images, this flag tells the optimizations that all images are for the same person ( that means the identity shape and skin reflectance is common for all images), if this flag is false, that each image belong to a different subject', required=False)
parser.add_argument("--output", required=False, default='./output/', help="path to the output directory where optimization results are saved in")
parser.add_argument("--config", required=False, default='./optimConfig.ini', help="path to the configuration file (used to configure the optimization)")
parser.add_argument("--checkpoint", required=False, default='', help="path to a checkpoint pickle file used to resume optimization")
parser.add_argument("--skipStage1", dest='skipStage1', action='store_true', help='if true, the first (coarse) stage is skipped (stage1). useful if u want to resume optimization from a checkpoint', required=False)
parser.add_argument("--skipStage2", dest='skipStage2', action='store_true', help='if true, the second stage is skipped (stage2). useful if u want to resume optimization from a checkpoint', required=False)
parser.add_argument("--skipStage3", dest='skipStage3', action='store_true', help='if true, the third stage is skipped (stage3). useful if u want to resume optimization from a checkpoint', required=False)
params = parser.parse_args()
inputDir = params.input
sharedIdentity = params.sharedIdentity
outputDir = params.output + '/' + os.path.basename(inputDir.strip('/'))
configFile = params.config
checkpoint = params.checkpoint
doStep1 = not params.skipStage1
doStep2 = not params.skipStage2
doStep3 = not params.skipStage3
config = Config()
config.fillFromDicFile(configFile)
if config.device == 'cuda' and torch.cuda.is_available() == False:
print('[WARN] no cuda enabled device found. switching to cpu... ')
config.device = 'cpu'
#check if mediapipe is available
if config.lamdmarksDetectorType == 'mediapipe':
try:
from landmarksmediapipe import LandmarksDetectorMediapipe
except:
print('[WARN] Mediapipe for landmarks detection not availble. falling back to FAN landmarks detector. You may want to try Mediapipe because it is much accurate than FAN (pip install mediapipe)')
config.lamdmarksDetectorType = 'fan'
optimizer = Optimizer(outputDir, config)
optimizer.run(inputDir,
sharedIdentity= sharedIdentity,
checkpoint= checkpoint,
doStep1= doStep1,
doStep2 = doStep2,
doStep3= doStep3)