forked from sunset1995/HorizonNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
254 lines (227 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import argparse
import numpy as np
from tqdm import trange
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from model import HorizonNet, ENCODER_RESNET, ENCODER_DENSENET
from dataset import PanoCorBonDataset
from misc.utils import group_weight, adjust_learning_rate, save_model, load_trained_model
from inference import inference
from eval_general import test_general
def feed_forward(net, x, y_bon, y_cor):
x = x.to(device)
y_bon = y_bon.to(device)
y_cor = y_cor.to(device)
losses = {}
y_bon_, y_cor_ = net(x)
losses['bon'] = F.l1_loss(y_bon_, y_bon)
losses['cor'] = F.binary_cross_entropy_with_logits(y_cor_, y_cor)
losses['total'] = losses['bon'] + losses['cor']
return losses
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--id', required=True,
help='experiment id to name checkpoints and logs')
parser.add_argument('--ckpt', default='./ckpt',
help='folder to output checkpoints')
parser.add_argument('--logs', default='./logs',
help='folder to logging')
parser.add_argument('--pth', default=None,
help='path to load saved checkpoint.'
'(finetuning)')
# Model related
parser.add_argument('--backbone', default='resnet50',
choices=ENCODER_RESNET + ENCODER_DENSENET,
help='backbone of the network')
parser.add_argument('--no_rnn', action='store_true',
help='whether to remove rnn or not')
# Dataset related arguments
parser.add_argument('--train_root_dir', default='data/layoutnet_dataset/train',
help='root directory to training dataset. '
'should contains img, label_cor subdirectories')
parser.add_argument('--valid_root_dir', default='data/layoutnet_dataset/valid',
help='root directory to validation dataset. '
'should contains img, label_cor subdirectories')
parser.add_argument('--no_flip', action='store_true',
help='disable left-right flip augmentation')
parser.add_argument('--no_rotate', action='store_true',
help='disable horizontal rotate augmentation')
parser.add_argument('--no_gamma', action='store_true',
help='disable gamma augmentation')
parser.add_argument('--no_pano_stretch', action='store_true',
help='disable pano stretch')
parser.add_argument('--num_workers', default=6, type=int,
help='numbers of workers for dataloaders')
# optimization related arguments
parser.add_argument('--freeze_earlier_blocks', default=-1, type=int)
parser.add_argument('--batch_size_train', default=4, type=int,
help='training mini-batch size')
parser.add_argument('--batch_size_valid', default=2, type=int,
help='validation mini-batch size')
parser.add_argument('--epochs', default=300, type=int,
help='epochs to train')
parser.add_argument('--optim', default='Adam',
help='optimizer to use. only support SGD and Adam')
parser.add_argument('--lr', default=1e-4, type=float,
help='learning rate')
parser.add_argument('--lr_pow', default=0.9, type=float,
help='power in poly to drop LR')
parser.add_argument('--warmup_lr', default=1e-6, type=float,
help='starting learning rate for warm up')
parser.add_argument('--warmup_epochs', default=0, type=int,
help='numbers of warmup epochs')
parser.add_argument('--beta1', default=0.9, type=float,
help='momentum for sgd, beta1 for adam')
parser.add_argument('--weight_decay', default=0, type=float,
help='factor for L2 regularization')
parser.add_argument('--bn_momentum', type=float)
# Misc arguments
parser.add_argument('--no_cuda', action='store_true',
help='disable cuda')
parser.add_argument('--seed', default=594277, type=int,
help='manual seed')
parser.add_argument('--disp_iter', type=int, default=1,
help='iterations frequency to display')
parser.add_argument('--save_every', type=int, default=25,
help='epochs frequency to save state_dict')
args = parser.parse_args()
device = torch.device('cpu' if args.no_cuda else 'cuda')
np.random.seed(args.seed)
torch.manual_seed(args.seed)
os.makedirs(os.path.join(args.ckpt, args.id), exist_ok=True)
# Create dataloader
dataset_train = PanoCorBonDataset(
root_dir=args.train_root_dir,
flip=not args.no_flip, rotate=not args.no_rotate, gamma=not args.no_gamma,
stretch=not args.no_pano_stretch)
loader_train = DataLoader(dataset_train, args.batch_size_train,
shuffle=True, drop_last=True,
num_workers=args.num_workers,
pin_memory=not args.no_cuda,
worker_init_fn=lambda x: np.random.seed())
if args.valid_root_dir:
dataset_valid = PanoCorBonDataset(
root_dir=args.valid_root_dir, return_cor=True,
flip=False, rotate=False, gamma=False,
stretch=False)
# Create model
if args.pth is not None:
print('Finetune model is given.')
print('Ignore --backbone and --no_rnn')
net = load_trained_model(HorizonNet, args.pth).to(device)
else:
net = HorizonNet(args.backbone, not args.no_rnn).to(device)
assert -1 <= args.freeze_earlier_blocks and args.freeze_earlier_blocks <= 4
if args.freeze_earlier_blocks != -1:
b0, b1, b2, b3, b4 = net.feature_extractor.list_blocks()
blocks = [b0, b1, b2, b3, b4]
for i in range(args.freeze_earlier_blocks + 1):
print('Freeze block%d' % i)
for m in blocks[i]:
for param in m.parameters():
param.requires_grad = False
if args.bn_momentum:
for m in net.modules():
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.momentum = args.bn_momentum
# Create optimizer
if args.optim == 'SGD':
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, net.parameters()),
lr=args.lr, momentum=args.beta1, weight_decay=args.weight_decay)
elif args.optim == 'Adam':
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, net.parameters()),
lr=args.lr, betas=(args.beta1, 0.999), weight_decay=args.weight_decay)
else:
raise NotImplementedError()
# Create tensorboard for monitoring training
tb_path = os.path.join(args.logs, args.id)
os.makedirs(tb_path, exist_ok=True)
tb_writer = SummaryWriter(log_dir=tb_path)
# Init variable
args.warmup_iters = args.warmup_epochs * len(loader_train)
args.max_iters = args.epochs * len(loader_train)
args.running_lr = args.warmup_lr if args.warmup_epochs > 0 else args.lr
args.cur_iter = 0
args.best_valid_score = 0
# Start training
for ith_epoch in trange(1, args.epochs + 1, desc='Epoch', unit='ep'):
# Train phase
net.train()
if args.freeze_earlier_blocks != -1:
b0, b1, b2, b3, b4 = net.feature_extractor.list_blocks()
blocks = [b0, b1, b2, b3, b4]
for i in range(args.freeze_earlier_blocks + 1):
for m in blocks[i]:
m.eval()
iterator_train = iter(loader_train)
for _ in trange(len(loader_train),
desc='Train ep%s' % ith_epoch, position=1):
# Set learning rate
adjust_learning_rate(optimizer, args)
args.cur_iter += 1
x, y_bon, y_cor = next(iterator_train)
losses = feed_forward(net, x, y_bon, y_cor)
for k, v in losses.items():
k = 'train/%s' % k
tb_writer.add_scalar(k, v.item(), args.cur_iter)
tb_writer.add_scalar('train/lr', args.running_lr, args.cur_iter)
loss = losses['total']
# backprop
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(net.parameters(), 3.0, norm_type='inf')
optimizer.step()
# Valid phase
net.eval()
if args.valid_root_dir:
valid_loss = {}
for jth in trange(len(dataset_valid),
desc='Valid ep%d' % ith_epoch, position=2):
x, y_bon, y_cor, gt_cor_id = dataset_valid[jth]
x, y_bon, y_cor = x[None], y_bon[None], y_cor[None]
with torch.no_grad():
losses = feed_forward(net, x, y_bon, y_cor)
# True eval result instead of training objective
true_eval = dict([
(n_corner, {'2DIoU': [], '3DIoU': [], 'rmse': [], 'delta_1': []})
for n_corner in ['4', '6', '8', '10+', 'odd', 'overall']
])
try:
dt_cor_id = inference(net, x, device, force_raw=True)[0]
dt_cor_id[:, 0] *= 1024
dt_cor_id[:, 1] *= 512
except:
dt_cor_id = np.array([
[k//2 * 1024, 256 - ((k%2)*2 - 1) * 120]
for k in range(8)
])
test_general(dt_cor_id, gt_cor_id, 1024, 512, true_eval)
losses['2DIoU'] = torch.FloatTensor([true_eval['overall']['2DIoU']])
losses['3DIoU'] = torch.FloatTensor([true_eval['overall']['3DIoU']])
losses['rmse'] = torch.FloatTensor([true_eval['overall']['rmse']])
losses['delta_1'] = torch.FloatTensor([true_eval['overall']['delta_1']])
for k, v in losses.items():
valid_loss[k] = valid_loss.get(k, 0) + v.item() * x.size(0)
for k, v in valid_loss.items():
k = 'valid/%s' % k
tb_writer.add_scalar(k, v / len(dataset_valid), ith_epoch)
# Save best validation loss model
now_valid_score = valid_loss['3DIoU'] / len(dataset_valid)
print('Ep%3d %.4f vs. Best %.4f' % (ith_epoch, now_valid_score, args.best_valid_score))
if now_valid_score > args.best_valid_score:
args.best_valid_score = now_valid_score
save_model(net,
os.path.join(args.ckpt, args.id, 'best_valid.pth'),
args)
# Periodically save model
if ith_epoch % args.save_every == 0:
save_model(net,
os.path.join(args.ckpt, args.id, 'epoch_%d.pth' % ith_epoch),
args)