In this kata, you must create a digital root
function.
A digital root is the recursive sum of all the digits in a number. Given n, take the sum of the digits of n. If that value has more than one digit, continue reducing in this way until a single-digit number is produced. This is only applicable to the natural numbers.
Here's how it works:
digital_root(16) => 1 + 6 => 7
digital_root(942) => 9 + 4 + 2 => 15 ... => 1 + 5 => 6
digital_root(132189) => 1 + 3 + 2 + 1 + 8 + 9 => 24 ... => 2 + 4 => 6
digital_root(493193) => 4 + 9 + 3 + 1 + 9 + 3 => 29 ... => 2 + 9 => 11 ... => 1 + 1 => 2
digitalRoot(16)
=> 1 + 6
=> 7
digitalRoot(942)
=> 9 + 4 + 2
=> 15 ...
=> 1 + 5
=> 6
digitalRoot(132189)
=> 1 + 3 + 2 + 1 + 8 + 9
=> 24 ...
=> 2 + 4
=> 6
digitalRoot(493193)
=> 4 + 9 + 3 + 1 + 9 + 3
=> 29 ...
=> 2 + 9
=> 11 ...
=> 1 + 1
=> 2
digital_root 16
=> 1 + 6
=> 7
digital_root 942
=> 9 + 4 + 2
=> 15 ...
=> 1 + 5
=> 6
digital_root 132189
=> 1 + 3 + 2 + 1 + 8 + 9
=> 24 ...
=> 2 + 4
=> 6
digital_root 493193
=> 4 + 9 + 3 + 1 + 9 + 3
=> 29 ...
=> 2 + 9
=> 11 ...
=> 1 + 1
=> 2
DigitalRoot(16)
=> 1 + 6
=> 7
DigitalRoot(942)
=> 9 + 4 + 2
=> 15 ...
=> 1 + 5
=> 6
DigitalRoot(132189)
=> 1 + 3 + 2 + 1 + 8 + 9
=> 24 ...
=> 2 + 4
=> 6
DigitalRoot(493193)
=> 4 + 9 + 3 + 1 + 9 + 3
=> 29 ...
=> 2 + 9
=> 11 ...
=> 1 + 1
=> 2