forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexKernel.cpp
796 lines (702 loc) · 30.4 KB
/
IndexKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/IndexKernel.h>
#include <cmath>
#include <iostream>
#include <ATen/Context.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/AtomicAddFloat.h>
#include <ATen/native/cpu/IndexKernelUtils.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/irange.h>
#include <c10/core/Scalar.h>
namespace at::native {
namespace {
using namespace vec;
void index_kernel(TensorIteratorBase& iter, IntArrayRef index_size, IntArrayRef index_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(kComplexHalf, kHalf, kBool, kBFloat16,
iter.dtype(), "index_cpu", [&] {
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)dst = *(scalar_t*)(src + offset);
});
});
}
// Given a linear index, returns the offset of the tensor.
// Implements the same algorithm as its (legacy) GPU version cuda::detail::IndexToOffset
// OffsetCalculator implements yet again the same algorithm but in a column-major order
struct IndexToOffset {
const IntArrayRef sizes;
const IntArrayRef strides;
const int64_t ndim;
explicit IndexToOffset(const TensorBase & tensor) :
sizes(tensor.sizes()), strides(tensor.strides()), ndim(tensor.dim()) {
}
int64_t get(int64_t linear_index) const {
int64_t offset = 0;
for (int64_t i = ndim - 1; i > 0; i--) {
offset += (linear_index % sizes[i]) * strides[i];
linear_index /= sizes[i];
}
return offset + linear_index * strides[0];
}
};
template <typename scalar_t, typename func_t>
void cpu_take_put_kernel(
TensorIterator& iter,
const TensorBase& indexed,
bool is_indexed_data_mutated,
const func_t& f,
bool serial_execution=false) {
// This kernel follows the same strategy as `cpu_index_kernel`
// Even though the indexed_tensor is const, we modify it through the data_ptr
// This is a bit dirty, but otherwise it would be necessary to unnecessarily add tensor
// with zero strides to `iter` which would not be much better
// When launch the parallel version, set a relative small grain size less than the INTERNAL::GRAIN_SIZE
// to make the whole available thread numbers get more balanced work load and a better cache location.
// The grain size here is chosen by the op benchmark to overcome the thread launch overhead
// Perhaps tweak this number for `put_`? This number was tweaked for `index_put`
constexpr int parallel_grain_size = 3000;
const bool is_contiguous = indexed.is_contiguous();
const auto numel = indexed.numel();
const auto offset_indexed = IndexToOffset(indexed);
auto* indexed_data = is_indexed_data_mutated ?
indexed.data_ptr<scalar_t>()
: const_cast<scalar_t*>(indexed.const_data_ptr<scalar_t>());
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto* iterated_data_bytes = data[0];
auto* index_data_bytes = data[1];
for ([[maybe_unused]] const auto elem : c10::irange(n)) {
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
auto& iterated = *reinterpret_cast<scalar_t*>(iterated_data_bytes);
TORCH_CHECK_INDEX(idx >= -numel && idx < numel,
"out of range: tried to access index ",
idx, " on a tensor of ", numel, " elements.");
if (idx < 0) {
idx += numel;
}
if (!is_contiguous) {
idx = offset_indexed.get(idx);
}
f(iterated, indexed_data, idx);
iterated_data_bytes += strides[0];
index_data_bytes += strides[1];
}
};
if (serial_execution) {
iter.serial_for_each(loop, {0, iter.numel()});
} else {
iter.for_each(loop, parallel_grain_size);
}
}
void put_kernel(
TensorIterator& iter,
const TensorBase & self,
const bool accumulate) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "take_put_cpu", [&] {
// iter could be const, but for_each does not have a const version
if (accumulate) {
// nb. This deterministic issue the same as that of `index_put_kernel`
// See Note [Enabling Deterministic Operations]
// Parallel cpu_put_kernel with accumulation is nondeterministic, so we
// must enable serial execution if deterministic algorithms are enabled.
bool is_deterministic = at::globalContext().deterministicAlgorithms();
bool use_parallel_for = (!is_deterministic) && (
(iter.numel() >= internal::GRAIN_SIZE) && (at::get_num_threads() > 1));
if (use_parallel_for && iter.dtype() == ScalarType::Float) {
cpu_take_put_kernel<float>(iter, self, true,
[](float& iterated, float* indexed, const int64_t idx) {
cpu_atomic_add_float(indexed+idx, iterated);
});
} else {
// TODO: investigate parallelization of the accumulate kernel.
// Unlike the non-accumulate case, this needs to be thread-safe.
cpu_take_put_kernel<scalar_t>(iter, self, true,
[](scalar_t& iterated, scalar_t* indexed, const int64_t idx) {
indexed[idx] += iterated;
},
/*serial_execution=*/true);
}
} else {
cpu_take_put_kernel<scalar_t>(iter, self, true,
[](scalar_t& iterated, scalar_t* indexed, const int64_t idx) {
indexed[idx] = iterated;
});
}
});
}
void take_kernel(
TensorIterator& iter,
const TensorBase & input) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16,
iter.dtype(), "take_cpu", [&] {
cpu_take_put_kernel<scalar_t>(iter, input, false,
[](scalar_t& iterated, const scalar_t* indexed, const int64_t idx) {
iterated = indexed[idx];
});
});
}
void index_put_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride, bool accumulate) {
// NOTE: duplicate indices are only supported if accumulate is true.
AT_DISPATCH_V2(
iter.dtype(),
"index_put",
AT_WRAP([&] {
// See Note [Enabling Deterministic Operations]
// Parallel cpu_index_kernel with accumulation is nondeterministic, so we
// must enable serial execution if deterministic algorithms are enabled.
const bool is_deterministic = at::globalContext().deterministicAlgorithms();
if (accumulate) {
bool use_parallel_for = (!is_deterministic) && (
(iter.numel() >= internal::GRAIN_SIZE) && (at::get_num_threads() > 1));
if (use_parallel_for && iter.dtype() == ScalarType::Float) {
cpu_index_kernel<float>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
cpu_atomic_add_float((float*)(dst + offset), *(float*)src);
});
} else {
// TODO: investigate parallelization of the accumulate kernel. Unlike the non-accumulate case,
// this needs to be thread-safe.
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset) += *(scalar_t*)src;
}, /*serial_execution=*/true);
}
} else {
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset) = *(scalar_t*)src;
}, /*serial_execution=*/is_deterministic);
}
}),
AT_EXPAND(AT_ALL_TYPES_AND_COMPLEX),
AT_EXPAND(AT_FLOAT8_TYPES),
kComplexHalf,
kHalf,
kBool,
kBFloat16);
}
void index_fill_kernel(
TensorIterator& iter,
int64_t dim,
int64_t self_dim_size,
int64_t self_dim_stride,
const Scalar& source) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16, kComplexHalf,
iter.dtype(), "index_fill_cpu", [&] {
auto fill_val = source.to<scalar_t>();
auto handle_nonzero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
for ([[maybe_unused]] const auto elem : c10::irange(n)) {
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
TORCH_CHECK_INDEX(idx >= -self_dim_size && idx < self_dim_size,
"index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
if (idx < 0) {
idx += self_dim_size;
}
self_data[idx * self_dim_stride] = fill_val;
self_data_bytes += strides[0];
index_data_bytes += strides[1];
}
};
auto handle_zero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
TORCH_CHECK_INDEX(idx >= -self_dim_size && idx < self_dim_size,
"index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
if (idx < 0) {
idx += self_dim_size;
}
for ([[maybe_unused]] const auto elem : c10::irange(n)) {
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
self_data[idx * self_dim_stride] = fill_val;
self_data_bytes += strides[0];
}
};
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto idx_stride = strides[1];
if (idx_stride) {
handle_nonzero_idx_stride(data, strides, n);
}
else {
handle_zero_idx_stride(data, strides, n);
}
};
iter.for_each(loop);
});
}
void index_copy_kernel(
TensorIterator& iter,
int64_t dim,
int64_t self_dim_size,
int64_t self_dim_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16, kComplexHalf,
iter.dtype(), "index_copy_cpu", [&] {
auto handle_nonzero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
auto* source_data_bytes = data[2];
for ([[maybe_unused]] const auto elem : c10::irange(n)) {
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
auto* source_data = reinterpret_cast<scalar_t*>(source_data_bytes);
TORCH_CHECK_INDEX(idx >= 0 && idx < self_dim_size,
"index_copy_(): index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
self_data[idx * self_dim_stride] = *source_data;
self_data_bytes += strides[0];
index_data_bytes += strides[1];
source_data_bytes += strides[2];
}
};
auto handle_zero_idx_stride = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[0];
auto* index_data_bytes = data[1];
auto* source_data_bytes = data[2];
auto idx = *reinterpret_cast<int64_t*>(index_data_bytes);
TORCH_CHECK_INDEX(idx >= 0 && idx < self_dim_size,
"index_copy_(): index ", idx, " is out of bounds for dimension ",
dim, " with size ", self_dim_size);
for ([[maybe_unused]] const auto elem : c10::irange(n)) {
auto* self_data = reinterpret_cast<scalar_t*>(self_data_bytes);
auto* source_data = reinterpret_cast<scalar_t*>(source_data_bytes);
self_data[idx * self_dim_stride] = *source_data;
self_data_bytes += strides[0];
source_data_bytes += strides[2];
}
};
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto idx_stride = strides[1];
if (idx_stride) {
handle_nonzero_idx_stride(data, strides, n);
}
else {
handle_zero_idx_stride(data, strides, n);
}
};
bool is_deterministic = at::globalContext().deterministicAlgorithms();
if (is_deterministic) {
iter.serial_for_each(loop, {0, iter.numel()});
} else {
iter.for_each(loop);
}
});
}
template <typename scalar_t>
void cpu_masked_fill_kernel(TensorIterator& iter, scalar_t value) {
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* mask = data[1];
for (const auto i : c10::irange(n)) {
bool mask_value = *reinterpret_cast<bool*>(mask + strides[1] * i);
if (mask_value) {
*(scalar_t*)(dst + strides[0] * i) = value;
}
}
};
iter.for_each(loop);
}
void masked_fill_kernel(TensorIterator& iter, const Scalar& value) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(kComplexHalf, kBool, kBFloat16, kHalf,
iter.dtype(), "masked_fill", [&] {
scalar_t scalar_val = value.to<scalar_t>();
auto mask_dtype = iter.input_dtype(0);
TORCH_CHECK(mask_dtype == ScalarType::Bool, "masked_fill only supports boolean masks, "
"but got mask with dtype ", mask_dtype);
cpu_masked_fill_kernel<scalar_t>(iter, scalar_val);
});
}
template <typename scalar_t>
void cpu_masked_scatter_kernel(TensorIterator& iter, const TensorBase& source) {
std::ptrdiff_t source_cntr = 0;
const scalar_t* source_ptr = source.const_data_ptr<scalar_t>();
auto numel = source.numel();
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
const int64_t dst_stride = strides[0];
char* mask = data[1];
const int64_t mask_stride = strides[1];
for (const auto i : c10::irange(n)) {
auto mask_value = *reinterpret_cast<bool*>(mask + mask_stride * i);
if (mask_value) {
TORCH_CHECK(source_cntr < numel, "Number of elements of source < number of ones in mask");
*(scalar_t*)(dst + dst_stride * i) = *(source_ptr);
source_ptr++;
source_cntr++;
}
}
};
iter.serial_for_each(loop, {0, iter.numel()});
}
void masked_scatter_kernel(TensorIterator& iter, const TensorBase& source) {
TORCH_CHECK(iter.input_dtype() == ScalarType::Bool, "masked_scatter_ only supports boolean masks, "
"but got mask with dtype ", iter.input_dtype());
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
ScalarType::Bool,
ScalarType::BFloat16,
ScalarType::Half,
iter.dtype(),
"masked_scatter",
[&] {
cpu_masked_scatter_kernel<scalar_t>(iter, source);
});
}
template <typename scalar_t, typename mask_t, typename func_t>
void cpu_masked_select_serial_kernel(TensorIterator& iter, const func_t& f) {
int64_t offset = 0;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* src = data[1];
char* mask = data[2];
for (const auto i : c10::irange(n)) {
mask_t mask_value = *(mask_t*)(mask + strides[2] * i);
if constexpr (!std::is_same_v<mask_t, bool>) {
TORCH_CHECK(mask_value == 0 || mask_value == 1, "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
int64_t offset_bytes = offset * sizeof(scalar_t);
f(dst, src + strides[1] * i, offset_bytes);
offset++;
}
}
};
iter.serial_for_each(loop, {0, iter.numel()});
}
void masked_select_serial_kernel(TensorIterator& iter, int64_t result_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
iter.dtype(), "masked_select", [&] {
auto mask_dtype = iter.input_dtype(1);
if (mask_dtype == ScalarType::Bool) {
cpu_masked_select_serial_kernel<scalar_t, bool>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
} else {
cpu_masked_select_serial_kernel<scalar_t, unsigned char>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
}
});
}
template <typename scalar_t, typename mask_t, typename func_t>
void cpu_masked_select_kernel(TensorIterator& iter, const func_t& f) {
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* src = data[1];
char* mask = data[2];
char* mask_prefix_sum = data[3];
for (const auto i : c10::irange(n)) {
mask_t mask_value = *(mask_t*)(mask + strides[2] * i);
if constexpr (!std::is_same_v<mask_t, bool>) {
TORCH_CHECK(mask_value == 0 || mask_value == 1, "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
int64_t offset = *(int64_t*)(mask_prefix_sum + strides[3] * i);
int64_t offset_bytes = (offset - 1) * sizeof(scalar_t);
f(dst, src + strides[1] * i, offset_bytes);
}
}
};
iter.for_each(loop);
}
void masked_select_kernel(TensorIterator& iter, int64_t result_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half,
iter.dtype(), "masked_select", [&] {
auto mask_dtype = iter.input_dtype(1);
if (mask_dtype == ScalarType::Bool) {
cpu_masked_select_kernel<scalar_t, bool>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
} else {
cpu_masked_select_kernel<scalar_t, unsigned char>(iter, [result_stride](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset*result_stride) = *(scalar_t*)src;
});
}
});
}
template <typename scalar_t>
void cpu_hflip_vec(at::TensorIterator& iter) {
auto loop2d = [&](char** base, const int64_t *strides, int64_t size0, int64_t size1) {
// Here ntensors is defined for output and 1 input. But tensor iterator has defined output, input
// and restrided_input (see aten/src/ATen/native/TensorTransformations.cpp#L64-L66) but we use only
// output and input.
static constexpr int ntensors = 2;
const int64_t *outer_strides = &strides[3];
std::array<char*, ntensors> data_arr;
std::copy_n(base, ntensors, data_arr.data());
using Vec = Vectorized<scalar_t>;
constexpr auto stride = sizeof(scalar_t);
TORCH_INTERNAL_ASSERT(stride == -strides[0] && stride == strides[1]);
for ([[maybe_unused]] const auto j : c10::irange(size1)) {
// vectorized loop with negative stride for output
char** C10_RESTRICT data_ = data_arr.data();
int64_t n = size0;
char* C10_RESTRICT data[ntensors];
for (const auto arg : c10::irange(ntensors)) {
data[arg] = data_[arg];
}
int64_t i = 0;
// data[0] unaligned pre-pass
int64_t offset = (j * n + (n - i - Vec::size())) % 32;
offset = (offset >= n) ? n : offset;
for (; i < offset; i++) {
scalar_t* out_ptr = (scalar_t*)(data[0] - i * stride);
*out_ptr = *(scalar_t *)(data[1] + i * stride);
}
// Empirically found that it is faster to process 3 data items together vs 2 or 4
for (; i <= n - 3 * Vec::size(); i += 3 * Vec::size()) {
auto out1 = Vec::loadu(data[1] + i * stride);
auto out2 = Vec::loadu(data[1] + (i + Vec::size()) * stride);
auto out3 = Vec::loadu(data[1] + (i + 2 * Vec::size()) * stride);
// flip the vector: 1234 -> 4321
out1 = flip(out1);
out2 = flip(out2);
out3 = flip(out3);
out1.store(data[0] - (i + Vec::size() - 1) * stride);
out2.store(data[0] - (i + 2 * Vec::size() - 1) * stride);
out3.store(data[0] - (i + 3 * Vec::size() - 1) * stride);
}
if (i < n) {
for (; i < n; i++) {
scalar_t* out_ptr = (scalar_t*)(data[0] - i * stride);
*out_ptr = *(scalar_t *)(data[1] + i * stride);
}
}
// advance:
for (const auto arg : c10::irange(ntensors)) {
data_arr[arg] += outer_strides[arg];
}
}
};
int64_t grain_size = at::internal::GRAIN_SIZE;
iter.for_each(loop2d, grain_size);
iter.cast_outputs();
}
void cpu_vflip_memcpy(at::TensorIterator& iter) {
// This is a vertical flip specialization using memcpy to speed-up the runtime
auto loop2d = [&](char** base, const int64_t *strides, int64_t size0, int64_t size1) {
// Here ntensors is defined for output and 1 input. But tensor iterator has defined output, input
// and restrided_input (see aten/src/ATen/native/TensorTransformations.cpp#L64-L66) but we use only
// output and input.
static constexpr int ntensors = 2;
const int64_t *outer_strides = &strides[3];
std::array<char*, ntensors> data_arr;
std::copy_n(base, ntensors, data_arr.data());
TORCH_INTERNAL_ASSERT(strides[0] == strides[1]);
const int64_t stride = strides[0];
for ([[maybe_unused]] const auto j : c10::irange(size1)) {
char** C10_RESTRICT data_ = data_arr.data();
int64_t n = size0;
char* C10_RESTRICT data[ntensors];
for (const auto arg : c10::irange(ntensors)) {
data[arg] = data_[arg];
}
memcpy(data[0], data[1], n * stride);
// advance:
for (const auto arg : c10::irange(data_arr.size())) {
data_arr[arg] += outer_strides[arg];
}
}
};
int64_t grain_size = at::internal::GRAIN_SIZE;
iter.for_each(loop2d, grain_size);
iter.cast_outputs();
}
constexpr int64_t hflip_mask_size = 32;
std::array<char, hflip_mask_size> generate_vec_hflip_reg_mask(int64_t data_stride) {
std::array<char, hflip_mask_size> mask;
for (const auto k : c10::irange(hflip_mask_size / 2)) {
int j = k / data_stride + 1;
int v = (j * data_stride - 1) - (k % data_stride);
v = std::min(v, (int) (hflip_mask_size / 2 - 1));
mask[hflip_mask_size - 1 - k] = v;
mask[hflip_mask_size / 2 - 1 - k] = v;
}
return mask;
}
int64_t vectorized_cpu_hflip_channels_last(
char * C10_RESTRICT *data, const int64_t data_size, const int64_t data_stride, const std::array<char, 32> & mdata) {
int64_t i = 0;
#ifdef CPU_CAPABILITY_AVX2
constexpr auto vec_size = 256 / 8;
if (data_size > vec_size) {
// Example for num channels=3 and dtype=uint8
// -> data_stride = 3
// -> usable_vec_stride = 30
// -> usable_vec_half_stride = 15
// Data: (1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15) (16 17 18) (19 20 21) (22 23 24) (25 26 27) (28 29 30) (31 32 33)
// load by 2 parts
// R = [ (1 2 3) (4 5 6) (7 8 9) (10 11 12) (13 14 15) (16 | (16 17 18) (19 20 21) (22 23 24) (25 26 27) (28 29 30) (31 ]
// flip(R) ->
// R = [ 31 (28 29 30) (25 26 27) (22 23 24) (19 20 21) (16 17 18) | 16 (13 14 15) (10 11 12) (7 8 9) (4 5 6) (1 2 3) ]
//
// Write in 2 parts
// Output pointer: output_ptr = data[0] v
// - Init:
// (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X)
// 0) Move to initial position: output_ptr = data[0] + data_stride - vec_size / 2;
// v
// (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X) (X X X)
// - In the loop:
// 1) Write 1st block from output_ptr
// v
// |----> vec_size / 2 ---------------------------|
// Output part 1: (X X X) (X X X) (X X X) (X X X) (X X X) (X X 16) (13 14 15) (10 11 12) (7 8 9) (4 5 6) (1 2 3)
// 2) Write 2nd block from output_ptr - usable_vec_half_stride:
// v
// |-----> vec_size / 2 ----------------------------------|
// Output part 2: (X X 31) (28 29 30) (25 26 27) (22 23 24) (19 20 21) (16 17 18) (13 14 15) (10 11 12) (7 8 9) (4 5 6) (1 2 3)
//
// 3) Move to the next position: output_ptr -= usable_vec_stride
//
// - After the loop:
// 4) Move to write position
// v
// (X X 31) (28 29 30) (25 26 27) (22 23 24) (19 20 21) (16 17 18) (13 14 15) (10 11 12) (7 8 9) (4 5 6) (1 2 3)
const __m256i mask = _mm256_loadu_si256((__m256i *) mdata.data());
const auto usable_vec_stride = 2 * (vec_size / 2 / data_stride) * data_stride;
const auto usable_vec_half_stride = usable_vec_stride / 2;
auto output_ptr = data[0] + data_stride - vec_size / 2;
auto input_ptr = data[1];
for (; i < data_size - vec_size; i += usable_vec_stride) {
// load 256-bits by two 128-bits parts
auto a0 = _mm_loadu_si128((__m128i *) (input_ptr + i));
auto b0 = _mm256_castsi128_si256(a0);
auto a1 = _mm_loadu_si128((__m128i *) (input_ptr + i + usable_vec_half_stride));
auto data_vec = _mm256_inserti128_si256(b0, a1, 1);
auto reversed_vec = _mm256_shuffle_epi8(data_vec, mask);
// write output in two parts
auto rev_vec_h = _mm256_extracti128_si256(reversed_vec, 0);
_mm_storeu_si128((__m128i *) (output_ptr - i), rev_vec_h);
auto rev_vec_l = _mm256_extracti128_si256(reversed_vec, 1);
_mm_storeu_si128((__m128i *) (output_ptr - i - usable_vec_half_stride), rev_vec_l);
}
data[0] -= i;
data[1] += i;
}
#endif
return i;
}
void cpu_hflip_channels_last_vec(at::TensorIterator& iter) {
auto input_strides = iter.strides(1);
const auto data_stride = input_strides[1];
// Generate avx mask once
alignas(hflip_mask_size) auto mdata = generate_vec_hflip_reg_mask(data_stride);
auto loop2d = [&](char** base, const int64_t *strides, int64_t size0, int64_t size1) {
// Here ntensors is defined for output and 1 input. But tensor iterator has defined output, input
// and restrided_input (see aten/src/ATen/native/TensorTransformations.cpp#L64-L66) but we use only
// output and input.
static constexpr int ntensors = 2;
const int64_t *outer_strides = &strides[3];
const int64_t stride = strides[0];
TORCH_INTERNAL_ASSERT(stride == strides[1]);
auto c = -outer_strides[0];
TORCH_INTERNAL_ASSERT(c == outer_strides[1]);
char* C10_RESTRICT data[ntensors] = {base[0], base[1]};
const int64_t size = size0 * size1;
int64_t i = 0;
if (c >= 2 && c <= 16) {
i = vectorized_cpu_hflip_channels_last(data, size * stride, c, mdata) / stride;
}
auto data_stride = size0 * stride;
for (; i < size; i += size0) {
memcpy(data[0], data[1], data_stride);
// advance:
for (const auto arg : c10::irange(ntensors)) {
data[arg] += outer_strides[arg];
}
}
};
int64_t grain_size = at::internal::GRAIN_SIZE;
iter.for_each(loop2d, grain_size);
iter.cast_outputs();
}
void flip_kernel(TensorIterator& iter, const bool quantized) {
if (quantized) {
AT_DISPATCH_QINT_AND_SUB_BYTE_TYPES(iter.dtype(), "flip_quantized_cpu",
[&iter] { cpu_kernel(iter,
[](scalar_t a, scalar_t /*dummy input*/) -> scalar_t {
return a;
});
});
} else {
auto output_strides = iter.strides(0);
auto input_strides = iter.strides(1);
if (iter.ndim() > 0 && output_strides[0] == -iter.element_size(0) && input_strides[0] == iter.element_size(1)) {
// Special case: horizontal flip with vectorization and input is contiguous
// Context: horizontal flip leads to strides[0] < 0 and
// thus is_contiguous condition is not satisfied and non-vectorized code path is taken.
auto iter_dtype = iter.dtype();
// Ignoring half and bfloat16 as cpu_hflip_vec is slower than cpu_kernel_vec
if (isIntegralType(iter_dtype, true) || iter_dtype == kDouble || iter_dtype == kFloat) {
// Replace AT_DISPATCH_ALL_TYPES_AND by manual if/else due to internal test failures:
// - "dtype 'Float' not selected for kernel tag hflip_cpu"
// - "dtype 'Long' not selected for kernel tag hflip_cpu"
//
// AT_DISPATCH_ALL_TYPES_AND(kBool,
// iter_dtype, "hflip_cpu", [&iter] {
// cpu_hflip_vec<scalar_t>(iter);
// });
if (iter_dtype == kByte) {
return cpu_hflip_vec<uint8_t>(iter);
} else if (iter_dtype == kChar) {
return cpu_hflip_vec<int8_t>(iter);
} else if (iter_dtype == kInt) {
return cpu_hflip_vec<int32_t>(iter);
} else if (iter_dtype == kLong) {
return cpu_hflip_vec<int64_t>(iter);
} else if (iter_dtype == kShort) {
return cpu_hflip_vec<int16_t>(iter);
} else if (iter_dtype == kBool) {
return cpu_hflip_vec<bool>(iter);
} else if (iter_dtype == kFloat) {
return cpu_hflip_vec<float>(iter);
} else if (iter_dtype == kDouble) {
return cpu_hflip_vec<double>(iter);
}
}
// other dtypes (float16, bfloat16, complex) are handled by cpu_kernel_vec (see below)
} else if (iter.has_contiguous_first_dim()) {
// Special cases:
// a) channels last hflip on (N, C, H, W) and outer_stride(=dtype_size * C) in [2, 16]
// b) flip dim=-2 on (N, ..., M, C) and outer_stride(=dtype_size * C) in [2, 16]
auto output_strides_2 = iter.strides(0);
auto input_strides_2 = iter.strides(1);
auto c = -output_strides_2[1];
if (c >= 2 && c <= 16 &&
c == input_strides_2[1] &&
c == iter.element_size(0) * iter.shape()[0] // checks if dim=1 is contiguous as well
) {
return cpu_hflip_channels_last_vec(iter);
}
// Special case: vertical flip using memcpy (faster than generic cpu_kernel_vec)
return cpu_vflip_memcpy(iter);
}
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kHalf, kBFloat16, iter.dtype(), "flip_cpu",
[&iter] { cpu_kernel_vec(iter,
[](scalar_t a, scalar_t /*dummy input*/) -> scalar_t {
return a;
},
[](Vectorized<scalar_t> a, Vectorized<scalar_t> /*dummy input*/) -> Vectorized<scalar_t> {
return a;
});
});
}
}
} // anonymous namespace
REGISTER_DISPATCH(index_stub, &index_kernel)
REGISTER_DISPATCH(index_fill_stub, &index_fill_kernel)
REGISTER_DISPATCH(index_copy_stub, &index_copy_kernel)
REGISTER_DISPATCH(index_put_stub, &index_put_kernel)
REGISTER_DISPATCH(put_stub, &put_kernel)
REGISTER_DISPATCH(take_stub, &take_kernel)
REGISTER_DISPATCH(masked_fill_stub, &masked_fill_kernel)
REGISTER_DISPATCH(masked_select_serial_stub, &masked_select_serial_kernel)
REGISTER_DISPATCH(masked_select_stub, &masked_select_kernel)
REGISTER_DISPATCH(masked_scatter_stub, &masked_scatter_kernel)
REGISTER_DISPATCH(flip_stub, &flip_kernel)
} // namespace at::native