forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConv.cpp
1087 lines (999 loc) · 39.3 KB
/
Conv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Config.h>
#include <torch/library.h>
#include <ATen/core/Tensor.h>
#include <ATen/native/ConvUtils.h>
#include <ATen/native/mkldnn/Conv.h>
#include <ATen/native/utils/ParamUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#include <ATen/Functions.h>
#else
#include <ATen/ops/_add_relu_native.h>
#include <ATen/ops/_to_dense_native.h>
#include <ATen/ops/convolution.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#include <ATen/ops/mkldnn_convolution_native.h>
#endif
#if !AT_MKLDNN_ENABLED()
namespace at { namespace native {
Tensor mkldnn_convolution(
const Tensor& input, const Tensor& weight, const std::optional<Tensor>& bias_opt,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups) {
TORCH_CHECK(false, "mkldnn_convolution_forward: ATen not compiled with MKLDNN support");
}
REGISTER_NO_CPU_DISPATCH(mkldnn_convolution_backward_stub);
REGISTER_NO_CPU_DISPATCH(mkldnn_convolution_transpose_stub);
REGISTER_NO_CPU_DISPATCH(mkldnn_convolution_transpose_backward_stub);
}}
#else // AT_MKLDNN_ENABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
#include <ATen/native/ConvUtils.h>
#include <c10/util/irange.h>
namespace at { namespace native {
// follow check rules from native/Convolution.cpp without transpose supported
static void check_shape_forward(const Tensor& input,
const Tensor& weight,
const Tensor& bias,
const IntArrayRef& padding,
const IntArrayRef& stride,
const IntArrayRef& dilation,
const int64_t groups) {
#define MKLDNN_CONV_ARG_CHECK(IT, OP) std::any_of(IT.begin(), IT.end(), [](auto x) { return x OP 0; })
auto is_padding_neg = MKLDNN_CONV_ARG_CHECK(padding, <);
auto is_stride_nonpos = MKLDNN_CONV_ARG_CHECK(stride, <=);
auto is_dilation_nonpos = MKLDNN_CONV_ARG_CHECK(dilation, <=);
#undef MKLDNN_CONV_ARG_CHECK
TORCH_CHECK(!is_padding_neg, "negative padding is not supported");
TORCH_CHECK(!is_stride_nonpos, "non-positive stride is not supported");
TORCH_CHECK(!is_dilation_nonpos, "non-positive dilation is not supported");
TORCH_CHECK(groups > 0, "non-positive groups is not supported");
int64_t k = input.ndimension();
const IntArrayRef& weight_sizes = weight.sizes();
int64_t weight_dim = weight_sizes.size();
TORCH_CHECK(weight_dim == k,
"Expected ", weight_dim, "-dimensional input for ", weight_dim,
"-dimensional weight ", weight_sizes, ", but got ", k, "-dimensional input of size ",
input.sizes(), " instead");
TORCH_CHECK(weight_sizes[0] >= groups,
"Given groups=", groups, ", expected weight to be at least ", groups,
" at dimension 0, but got weight of size ", weight_sizes, " instead");
TORCH_CHECK(weight_sizes[0] % groups == 0,
"Given groups=", groups, ", expected weight to be divisible by ",
groups, " at dimension 0, but got weight of size [", weight_sizes,
"] instead");
TORCH_CHECK(input.size(1) == (weight_sizes[1] * groups),
"Given groups=", groups, ", weight of size ", weight_sizes,
", expected input", input.sizes(), " to have ",
(weight_sizes[1] * groups), " channels, but got ", input.size(1),
" channels instead");
TORCH_CHECK(!bias.defined() || (bias.ndimension() == 1 && bias.size(0) == weight_sizes[0]),
"Given weight of size ", weight_sizes,
", expected bias to be 1-dimensional with ", weight_sizes[0], " elements",
", but got bias of size ", bias.sizes(), " instead");
std::vector<int64_t> input_shape;
std::vector<int64_t> kernel_shape;
bool kernel_size_correct = true;
for (const auto i : c10::irange(2, k)) {
input_shape.push_back(input.size(i) + 2 * padding[i-2]);
// log new kernel size considering dilation
kernel_shape.push_back(dilation[i-2] * (weight_sizes[i]-1) + 1);
if (input_shape.back() < kernel_shape.back()) {
kernel_size_correct = false;
}
}
TORCH_CHECK(input_shape.size() == kernel_shape.size(), "Inconsistent shape between Input and Kernel");
if (!kernel_size_correct) {
// If kernel size is incorrect
std::ostringstream input_ss;
std::ostringstream kernel_ss;
std::string separator = "";
for (int i = 0, len = input_shape.size(); i < len; ++i) {
input_ss << separator << input_shape[i];
kernel_ss << separator << kernel_shape[i];
separator = " x ";
}
TORCH_CHECK(false, "Calculated padded input size per channel: (", input_ss.str(), "). "
"Kernel size: (", kernel_ss.str(), "). Kernel size can't be greater than actual input size");
}
}
#define MKLDNNTensor(itensor, options) \
new_with_itensor_mkldnn( \
std::move(itensor), \
optTypeMetaToScalarType(options.dtype_opt()), \
options.device_opt())
// Note [MKLDNN Convolution Memory Formats]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// MKLDNN has 3 types of memory formats in convolution:
//
// In case memory format passed from PyTorch (aka. user layout)
// differs from the internal layout which MKLDNN used, a `reorder` is needed;
// otherwise when user layout is identical to internal layout,
// MKLDNN uses a memory `view` upon an existing CPU tensor.
//
// 1. NCHW (CPU tensor, contiguous)
// input reorder: NCHW(user) -> Blocked(internal)
// weight reorder: OIHW(user) -> Blocked(internal)
// output reorder: Blocked(internal) -> NCHW(user)
//
// 2. NHWC: (CPU tensor, channels last)
// input view: NHWC(user) -> NHWC(internal)
// weight reorder: OHWI(user) -> Blocked(internal)
// output view: NHWC(internal) -> NHWC(user)
//
// 3. Blocked (MKLDNN tensor):
// By explicitly converting a tensor to mkldnn, e.g. `x.to_mkldnn()`,
// blocked format will propagate between layers. Input, output will be in blocked format.
//
// For inference case, weight can be prepacked into blocked format by
// (so as to save weight reoder overhead):
// model = torch.utils.mkldnn.to_mkldnn(model)
//
// For training case, grad_output can be CPU tensor or MKLDNN tensor,
// but weight/bias and grad_weight/grad_bias are always CPU tensor.
//
static inline at::MemoryFormat mkldnn_convolution_memory_format(int64_t dims, bool is_channels_last) {
auto memory_format = at::MemoryFormat::Contiguous;
if (is_channels_last) {
memory_format = dims == 4 ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::ChannelsLast3d;
}
return memory_format;
}
static void _mkldnn_convolution_out (
const Tensor& input_t,
const Tensor& weight_t,
const Tensor& bias,
std::vector<int64_t>& output_sizes,
ideep::tensor& y,
IntArrayRef stride,
IntArrayRef dilation,
IntArrayRef padding,
int64_t groups,
bool is_channels_last,
const ideep::attr_t& op_attr) {
auto memory_format = mkldnn_convolution_memory_format(input_t.ndimension(), is_channels_last);
auto input = input_t.is_mkldnn() ? input_t : input_t.contiguous(memory_format);
auto weight = weight_t.is_mkldnn() ? weight_t : weight_t.contiguous(memory_format);
const ideep::tensor x = itensor_from_tensor(input, /*from_const_data_ptr*/true);
const ideep::tensor w = itensor_from_tensor(weight, /*from_const_data_ptr*/true);
if (bias.defined()) {
const ideep::tensor b = itensor_from_tensor(bias, /*from_const_data_ptr*/true);
ideep::convolution_forward::compute_v3(
x,
w,
b,
{output_sizes.cbegin(), output_sizes.cend()},
y,
{stride.begin(), stride.end()},
{dilation.begin(), dilation.end()},
{padding.begin(), padding.end()},
{padding.begin(), padding.end()},
groups,
is_channels_last,
op_attr);
} else {
ideep::convolution_forward::compute_v3(
x,
w,
{output_sizes.cbegin(), output_sizes.cend()},
y,
{stride.begin(), stride.end()},
{dilation.begin(), dilation.end()},
{padding.begin(), padding.end()},
{padding.begin(), padding.end()},
groups,
is_channels_last,
op_attr);
}
}
static Tensor _mkldnn_convolution(
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
bool use_channels_last,
c10::string_view attr = "none",
torch::List<std::optional<at::Scalar>> scalars =
torch::List<std::optional<at::Scalar>>(),
std::optional<c10::string_view> algorithm = std::nullopt) {
ideep::attr_t op_attr = ideep::attr_t();
if (attr != "none") {
auto it = fusion_unary_attr_map().find(attr);
TORCH_CHECK(
it != fusion_unary_attr_map().end(), "Fusion behavior undefined.");
op_attr = it->second(scalars, algorithm);
}
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
mkldnn_check_low_precision(input_t.scalar_type(), "mkldnn_convolution");
int64_t dim = input_t.ndimension() - 2;
const auto padding_expanded = expand_param_if_needed(padding, "padding", dim);
const auto stride_expanded = expand_param_if_needed(stride, "stride", dim);
const auto dilation_expanded = expand_param_if_needed(dilation, "dilation", dim);
check_shape_forward(input_t, weight_t, bias, padding_expanded, stride_expanded, dilation_expanded, groups);
auto memory_format =
mkldnn_convolution_memory_format(input_t.ndimension(), use_channels_last);
auto output_sizes = conv_output_size(input_t.sizes(), weight_t.sizes(), padding_expanded, stride_expanded, dilation_expanded);
auto output = at::empty({0}, input_t.options());
ideep::tensor y;
if (use_channels_last) {
output.resize_(output_sizes, memory_format);
y = itensor_from_tensor(output);
}
_mkldnn_convolution_out(
input_t,
weight_t,
bias,
output_sizes,
y,
stride_expanded,
dilation_expanded,
padding_expanded,
groups,
use_channels_last,
op_attr);
if (input_t.is_mkldnn()) {
return MKLDNNTensor(y, input_t.options());
} else if (!use_channels_last) {
return mkldnn_to_dense(MKLDNNTensor(y, input_t.options()));
} else {
return output;
}
}
Tensor mkldnn_convolution(
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups) {
bool use_channels_last = mkldnn_conv_use_channels_last(input_t, weight_t);
return _mkldnn_convolution(
input_t,
weight_t,
bias_opt,
padding,
stride,
dilation,
groups,
use_channels_last);
}
Tensor mkldnn_convolution_pointwise(
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
c10::string_view attr,
torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
bool use_channels_last =
weight_t.is_mkldnn() || mkldnn_conv_use_channels_last(input_t, weight_t);
return _mkldnn_convolution(
input_t,
weight_t,
bias_opt,
padding,
stride,
dilation,
groups,
use_channels_last,
attr,
scalars,
algorithm);
}
// Fuse convolution+binary_op+unary_op for good performance, which doing such
// operation: output=unary_op(binary_op(conv(input_t, ...), other_t, alpha)).
// The binary_attr means which binary_op is, it can be "add", or
// other binary operation. the unary_attr means which unary_op is,
// it can be "relu" or other unary operation, if it is none, meaning that
// there doesn't have a unary post op. unary_scalars and unary_algorithm
// are the parameters of the unary op, such as "hardtanh" has scalar parameters,
// "gelu" has algorithm parameters.
Tensor mkldnn_convolution_pointwise_binary(
const Tensor& input_t,
const Tensor& other_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
c10::string_view binary_attr,
std::optional<at::Scalar> alpha,
std::optional<c10::string_view> unary_attr,
torch::List<std::optional<at::Scalar>> unary_scalars,
std::optional<c10::string_view> unary_algorithm) {
TORCH_CHECK(
input_t.ndimension() == 4 || input_t.ndimension() == 5,
"mkldnn_convolution_pointwise_binary: currently only support 2d and 3d")
TORCH_CHECK(
!alpha.has_value() || alpha.value().to<float>() == 1.0,
"mkldnn_convolution_pointwise_binary: the alpha value should be none or 1.0");
c10::MaybeOwned<Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
// Make sure inputs have same type(device, layout, dtype), device is cpu and
// dtype is float, bfloat16 or half.
check_mkldnn_binary_fusion_inputs(input_t, other_t, weight_t, bias);
int64_t dim = input_t.ndimension() - 2;
const auto padding_expanded = expand_param_if_needed(padding, "padding", dim);
const auto stride_expanded = expand_param_if_needed(stride, "stride", dim);
const auto dilation_expanded = expand_param_if_needed(dilation, "dilation", dim);
check_shape_forward(
input_t, weight_t, bias, padding_expanded, stride_expanded, dilation_expanded, groups);
auto output_sizes = conv_output_size(
input_t.sizes(), weight_t.sizes(), padding_expanded, stride_expanded, dilation_expanded);
// TODO: support broadcast binary fusion.
TORCH_CHECK(
output_sizes == other_t.sizes(),
"Binary Fusion's inputs should have same shape");
// Only calling fusion path for channels_last path.
// TODO: OneDNN doesn't optimize well for groups > 1 case, it will be enabled
// at next OneDNN release.
bool use_channels_last =
weight_t.is_mkldnn() || mkldnn_conv_use_channels_last(input_t, weight_t);
bool can_be_fused = groups == 1 && use_channels_last;
c10::string_view unary_attr_value = "none";
ideep::algorithm unary_alg;
if (unary_attr.has_value()) {
auto it_unary = fusion_unary_alg_map().find(unary_attr.value());
// Now, we only support conv+binary+relu.
TORCH_CHECK(
it_unary != fusion_unary_alg_map().end(),
"Unary Fusion behavior undefined.");
unary_attr_value = unary_attr.value();
unary_alg = it_unary->second;
}
auto it_binary = fusion_binary_alg_map().find(binary_attr);
TORCH_CHECK(
it_binary != fusion_binary_alg_map().end(),
"Binary Fusion behavior undefined.");
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
if (can_be_fused) {
auto memory_format =
mkldnn_convolution_memory_format(input_t.ndimension(), true);
auto input = input_t.contiguous(memory_format);
auto weight =
weight_t.is_mkldnn() ? weight_t : weight_t.contiguous(memory_format);
auto other = other_t.contiguous(memory_format);
auto output = at::empty_like(other);
const ideep::tensor x = itensor_from_tensor(input);
const ideep::tensor w = itensor_from_tensor(weight);
const ideep::tensor z = itensor_from_tensor(other);
ideep::tensor y = itensor_from_tensor(output);
auto output_size = other.sizes().vec();
ideep::tag format_tag = ideep::tag::nhwc;
if (input_t.ndimension() == 5) {
format_tag = ideep::tag::ndhwc;
}
auto other_desc = ideep::tensor::desc(
output_size, get_mkldnn_dtype(weight.scalar_type()), format_tag);
ideep::attr_t op_attr;
ideep::post_ops po;
po.append_binary(it_binary->second, other_desc);
if (unary_attr_value != "none") {
po.append_eltwise(unary_alg, 0.f, 0.f);
}
op_attr.set_post_ops(po);
if (bias.defined()) {
const ideep::tensor b = itensor_from_tensor(bias);
ideep::convolution_forward::compute_binary(
x,
z,
w,
b,
output_size,
y,
stride_expanded,
dilation_expanded,
padding_expanded,
padding_expanded,
groups,
/* is_channels_last */ true,
op_attr);
} else {
ideep::convolution_forward::compute_binary(
x,
z,
w,
output_size,
y,
stride_expanded,
dilation_expanded,
padding_expanded,
padding_expanded,
groups,
/* is_channels_last */ true,
op_attr);
}
return output;
} else {
// Fallback case, if inputs are not channels last or have different dtype,
// OneDNN fusion may have performance regression.
Tensor output;
if (weight_t.is_mkldnn()) {
output = _mkldnn_convolution(
input_t, weight_t, bias, padding_expanded, stride_expanded, dilation, groups, true);
} else {
output = at::convolution(
input_t, weight_t, bias, stride_expanded, padding_expanded, dilation_expanded, false, 0, groups);
}
if (binary_attr == "add" && unary_attr_value != "none") {
output = at::native::add_relu_(output, other_t);
return output;
}
if (binary_attr == "add") {
output.add_(other_t);
} else if (binary_attr == "sub") {
output.sub_(other_t);
} else if (binary_attr == "mul") {
output.mul_(other_t);
} else {
output.div_(other_t);
}
if (unary_attr_value != "none") {
output.relu_();
}
return output;
}
}
// Fuse convolution+binary_op+unary_op for good performance, which doing
// such operation: other_t=unary_op(binary_op(conv(input_t, ...), other_t,
// alpha)). The binary_attr means which binary_op is, it can be "add", or other
// binary operation. the unary_attr means which unary_op is, it can be "relu" or
// other unary operation, if it is none, meaning that there doesn't have a unary
// post op. unary_scalars and unary_algorithm are the parameters of the unary
// op, such as "hardtanh" has scalar parameters "gelu" has algorithm parameters.
Tensor& mkldnn_convolution_pointwise_binary_(
Tensor& other_t,
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
c10::string_view binary_attr,
std::optional<at::Scalar> alpha,
std::optional<c10::string_view> unary_attr,
torch::List<std::optional<at::Scalar>> unary_scalars,
std::optional<c10::string_view> unary_algorithm) {
// other_t += convolution(...), other_t = unary(other_t)
TORCH_CHECK(
input_t.ndimension() == 4 || input_t.ndimension() == 5,
"mkldnn_convolution_add_: currently only support 2d and 3d")
TORCH_CHECK(
binary_attr == "add",
"mkldnn_convolution_pointwise_binary_: only support binary op fusion")
TORCH_CHECK(
!alpha.has_value() || alpha.value().to<float>() == 1.0,
"mkldnn_convolution_pointwise_binary: the alpha value for the binary op should be none(meaning 1.0) or 1.0");
TORCH_CHECK(
!unary_attr.has_value() || unary_attr.value() == "relu",
"mkldnn_convolution_pointwise_binary: only support none or relu unary op fusion after binary op");
c10::MaybeOwned<Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
// Make sure inputs have same type(device, layout, dtype), device is cpu and
// dtype is float, bfloat16 or half.
check_mkldnn_binary_fusion_inputs(input_t, other_t, weight_t, bias);
int64_t dim = input_t.ndimension() - 2;
const auto padding_expanded = expand_param_if_needed(padding, "padding", dim);
const auto stride_expanded = expand_param_if_needed(stride, "stride", dim);
const auto dilation_expanded = expand_param_if_needed(dilation, "dilation", dim);
check_shape_forward(
input_t, weight_t, bias, padding, stride, dilation, groups);
auto output_sizes = conv_output_size(
input_t.sizes(), weight_t.sizes(), padding_expanded, stride_expanded, dilation_expanded);
TORCH_CHECK(
output_sizes == other_t.sizes(),
"Add Fusion's inputs should have same shape");
// Only calling fusion path for channels_last path and the output is contiguous tensor(channels_last).
bool can_be_fused = (weight_t.is_mkldnn() ||
mkldnn_conv_use_channels_last(input_t, weight_t)) &&
(other_t.is_contiguous(at::MemoryFormat::ChannelsLast) ||
other_t.is_contiguous(at::MemoryFormat::ChannelsLast3d));
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
if (can_be_fused) {
ideep::tensor y = itensor_from_tensor(other_t);
ideep::attr_t op_attr;
if (unary_attr.has_value()) {
op_attr = ideep::attr_t::residual();
} else {
op_attr = ideep::attr_t::fuse_sum();
}
_mkldnn_convolution_out(
input_t,
weight_t,
bias,
output_sizes,
y,
stride_expanded,
dilation_expanded,
padding_expanded,
groups,
true,
op_attr);
} else {
// Fallback case, if inputs are not channels last or have different dtype,
// OneDNN fusion may have performance regression.
Tensor output;
if (weight_t.is_mkldnn()) {
output = _mkldnn_convolution(
input_t, weight_t, bias, padding_expanded, stride_expanded, dilation_expanded, groups, true);
} else {
output = at::convolution(
input_t, weight_t, bias, stride_expanded, padding_expanded, dilation_expanded, false, 0, groups);
}
if (unary_attr.has_value()) {
other_t = at::native::add_relu_(other_t, output);
} else {
other_t.add_(output);
}
}
return other_t;
}
namespace{
std::vector<int64_t> _original_deconv_weight_size(
const Tensor& weight_t,
int64_t groups) {
TORCH_CHECK(weight_t.is_mkldnn() || weight_t.is_meta(), "expects weight_t to be mkldnn or meta tensor");
// The size of weight_t is the prepacked size.
// Groups > 1: [g*o, i/g, ...]
// Groups == 1: [o, i, ...]
// Returns original weight size in [i, o, ...]
auto dim = weight_t.sizes().size();
TORCH_CHECK(dim > 2);
std::vector<int64_t> weight_IOHW_sizes(dim);
if (groups > 1) {
weight_IOHW_sizes[0] = weight_t.sizes()[1] * groups;
weight_IOHW_sizes[1] = weight_t.sizes()[0] / groups;
} else {
weight_IOHW_sizes[0] = weight_t.sizes()[1];
weight_IOHW_sizes[1] = weight_t.sizes()[0];
}
for (const auto d : c10::irange(2, dim)) {
weight_IOHW_sizes[d] = weight_t.sizes()[d];
}
return weight_IOHW_sizes;
}
Tensor _mkldnn_convolution_transpose(
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef output_padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
bool use_channels_last,
c10::string_view attr = "none",
torch::List<std::optional<at::Scalar>> scalars =
torch::List<std::optional<at::Scalar>>(),
std::optional<c10::string_view> algorithm = std::nullopt) {
ideep::attr_t op_attr = ideep::attr_t();
if (attr != "none") {
auto it = fusion_unary_attr_map().find(attr);
TORCH_CHECK(it != fusion_unary_attr_map().end(), "Fusion behavior undefined.");
op_attr = it->second(scalars, algorithm);
}
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
mkldnn_check_low_precision(input_t.scalar_type(), "mkldnn_convolution_transpose");
std::vector<int64_t> weight_IOHW_sizes = weight_t.is_mkldnn() ? _original_deconv_weight_size(weight_t, groups) : weight_t.sizes().vec();
auto memory_format =
mkldnn_convolution_memory_format(input_t.ndimension(), use_channels_last);
auto input = input_t.is_mkldnn() ? input_t : input_t.contiguous(memory_format);
auto weight = weight_t.is_mkldnn() ? weight_t : weight_t.contiguous(memory_format);
int64_t dim = input.ndimension() - 2;
const auto padding_expanded = expand_param_if_needed(padding, "padding", dim);
const auto stride_expanded = expand_param_if_needed(stride, "stride", dim);
const auto dilation_expanded = expand_param_if_needed(dilation, "dilation", dim);
const auto output_padding_expanded = expand_param_if_needed(output_padding, "output_padding", dim);
auto output_sizes = conv_input_size(input.sizes(), weight_IOHW_sizes, padding_expanded, output_padding_expanded, stride_expanded, dilation_expanded, groups);
auto output = at::empty({0}, input.options());
const ideep::tensor x = itensor_from_tensor(input, /*from_const_data_ptr*/true);
ideep::tensor w = itensor_from_tensor(weight, /*from_const_data_ptr*/true);
if (!weight.is_mkldnn()) {
// mkldnn transposed convolution has weight in logical order of OIHW or OIDHW,
// while PyTorch has IOHW or IODHW, `._tranpose()` switches strides (no memory copy).
w.transpose_(0, 1);
}
ideep::tensor y;
if (use_channels_last) {
output.resize_(output_sizes, memory_format);
y = itensor_from_tensor(output);
}
if (bias.defined()) {
const ideep::tensor b = itensor_from_tensor(bias, /*from_const_data_ptr*/true);
ideep::convolution_transpose_forward::compute_v3(
x,
w,
b,
output_sizes,
y,
stride_expanded,
padding_expanded,
padding_r(padding_expanded, output_padding_expanded),
dilation.vec(),
groups,
use_channels_last,
op_attr);
} else {
ideep::convolution_transpose_forward::compute_v3(
x,
w,
output_sizes,
y,
stride_expanded,
padding_expanded,
padding_r(padding_expanded, output_padding_expanded),
dilation.vec(),
groups,
use_channels_last,
op_attr);
}
if (input.is_mkldnn()) {
return MKLDNNTensor(y, input.options());
} else if (!use_channels_last) {
return mkldnn_to_dense(MKLDNNTensor(y, input.options()));
} else {
return output;
}
}
Tensor mkldnn_convolution_transpose_pointwise_meta(
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef output_padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
c10::string_view attr,
torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
std::vector<int64_t> weight_IOHW_sizes = _original_deconv_weight_size(weight_t, groups);
int64_t dim = input_t.ndimension() - 2;
const auto padding_expanded = expand_param_if_needed(padding, "padding", dim);
const auto stride_expanded = expand_param_if_needed(stride, "stride", dim);
const auto dilation_expanded = expand_param_if_needed(dilation, "dilation", dim);
const auto output_padding_expanded = expand_param_if_needed(output_padding, "output_padding", dim);
auto output_sizes = conv_input_size(input_t.sizes(), weight_IOHW_sizes, padding_expanded , output_padding_expanded , stride_expanded , dilation_expanded , groups);
auto output = at::empty(output_sizes, input_t.options());
return output;
}
Tensor mkldnn_convolution_backward_input(
IntArrayRef input_size,
const Tensor& grad_output,
const Tensor& weight,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
bool bias_defined,
bool is_channels_last) {
auto grad_input = at::empty({0}, grad_output.options());
auto grad_y = itensor_from_tensor(grad_output, /*from_const_data_ptr*/true);
auto w = itensor_view_from_dense(weight, /*from_const_data_ptr*/true);
ideep::tensor grad_x;
if (is_channels_last) {
auto memory_format = mkldnn_convolution_memory_format(grad_output.ndimension(), is_channels_last);
grad_input.resize_(input_size, memory_format);
grad_x = itensor_from_tensor(grad_input);
}
ideep::convolution_backward_data::compute_v2(
grad_y,
w,
input_size.vec(),
grad_x,
stride.vec(),
dilation.vec(),
padding.vec(),
padding.vec(),
groups,
is_channels_last);
if (grad_output.is_mkldnn()) {
return MKLDNNTensor(grad_x, grad_output.options());
} else if (!is_channels_last){
return mkldnn_to_dense(MKLDNNTensor(grad_x, grad_output.options()));
} else {
return grad_input;
}
}
std::tuple<Tensor, Tensor> mkldnn_convolution_backward_weights(
IntArrayRef weight_size,
const Tensor& grad_output,
const Tensor& input,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
bool bias_defined,
bool is_channels_last) {
const ideep::tensor grad_y = itensor_from_tensor(grad_output, /*from_const_data_ptr*/true);
const ideep::tensor x = itensor_from_tensor(input, /*from_const_data_ptr*/true);
ideep::tensor grad_w, grad_b;
if (bias_defined) {
ideep::convolution_backward_weights::compute_v2(
x,
grad_y,
weight_size.vec(),
grad_w,
grad_b,
stride.vec(),
dilation.vec(),
padding.vec(),
padding.vec(),
groups,
is_channels_last);
} else {
ideep::convolution_backward_weights::compute_v2(
x,
grad_y,
weight_size.vec(),
grad_w,
stride.vec(),
dilation.vec(),
padding.vec(),
padding.vec(),
groups,
is_channels_last);
}
if (!is_channels_last) {
return std::make_tuple(
mkldnn_to_dense(MKLDNNTensor(grad_w, grad_output.options())),
bias_defined ? mkldnn_to_dense(MKLDNNTensor(grad_b, grad_output.options())) : Tensor());
} else {
auto memory_format = mkldnn_convolution_memory_format(grad_output.ndimension(), is_channels_last);
return std::make_tuple(
mkldnn_to_dense(MKLDNNTensor(grad_w, grad_output.options())).to(memory_format),
bias_defined ? mkldnn_to_dense(MKLDNNTensor(grad_b, grad_output.options())) : Tensor());
}
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_convolution_backward(
const Tensor& input_t, const Tensor& grad_output_t, const Tensor& weight_t,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, std::array<bool,3> output_mask)
{
bool is_channels_last = mkldnn_conv_use_channels_last(input_t, weight_t);
auto memory_format = mkldnn_convolution_memory_format(input_t.ndimension(), is_channels_last);
Tensor grad_output = grad_output_t.is_mkldnn() ? grad_output_t : grad_output_t.contiguous(memory_format);
Tensor input = input_t.is_mkldnn() ? input_t : input_t.contiguous(memory_format);
Tensor weight = weight_t.is_mkldnn() ? weight_t : weight_t.contiguous(memory_format);
int64_t dim = input.ndimension() - 2;
const auto padding_expanded = expand_param_if_needed(padding, "padding", dim);
const auto stride_expanded = expand_param_if_needed(stride, "stride", dim);
const auto dilation_expanded = expand_param_if_needed(dilation, "dilation", dim);
Tensor grad_input, grad_weight, grad_bias;
if (output_mask[0]) {
grad_input = mkldnn_convolution_backward_input(
input.sizes(), grad_output, weight, padding_expanded, stride_expanded, dilation_expanded, groups, output_mask[2], is_channels_last);
}
if (output_mask[1] || output_mask[2]) {
std::tie(grad_weight, grad_bias) = mkldnn_convolution_backward_weights(
weight.sizes(), grad_output, input, padding_expanded, stride_expanded, dilation_expanded, groups, output_mask[2], is_channels_last);
}
return std::make_tuple(grad_input, grad_weight, grad_bias);
}
}
Tensor mkldnn_convolution_transpose_pointwise(
const Tensor& input_t,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef output_padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
c10::string_view attr,
torch::List<std::optional<at::Scalar>> scalars,
std::optional<c10::string_view> algorithm) {
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
bool use_channels_last =
weight_t.is_mkldnn() || mkldnn_conv_use_channels_last(input_t, weight_t);
return _mkldnn_convolution_transpose(
input_t,
weight_t,
bias_opt,
padding,
output_padding,
stride,
dilation,
groups,
use_channels_last,
attr,
scalars,
algorithm
);
}
REGISTER_ALL_CPU_DISPATCH(mkldnn_convolution_backward_stub, &mkldnn_convolution_backward);
namespace{
Tensor mkldnn_convolution_transpose(
const Tensor& input,
const Tensor& weight,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
IntArrayRef output_padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups)
{
bool use_channels_last = mkldnn_conv_use_channels_last(input, weight);
return _mkldnn_convolution_transpose(
input,
weight,
bias_opt,
padding,
output_padding,
stride,
dilation,
groups,
use_channels_last
);
}
Tensor mkldnn_convolution_transpose_backward_input(
IntArrayRef input_size,
const Tensor& grad_output,
const Tensor& weight,
IntArrayRef padding,
IntArrayRef output_padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
bool bias_defined,
bool is_channels_last) {
auto grad_input = at::empty({0}, grad_output.options());
auto grad_y = itensor_from_tensor(grad_output, /*from_const_data_ptr*/true);
auto w = itensor_view_from_dense(weight, /*from_const_data_ptr*/true).transpose_(0, 1);
ideep::tensor grad_x;
if (is_channels_last) {
auto memory_format = mkldnn_convolution_memory_format(grad_output.ndimension(), is_channels_last);
grad_input.resize_(input_size, memory_format);
grad_x = itensor_from_tensor(grad_input);
}
ideep::convolution_transpose_backward_data::compute_v3(
grad_y,
w,
input_size.vec(),
grad_x,
stride.vec(),
padding.vec(),
padding_r(padding, output_padding),
dilation.vec(),
groups,
is_channels_last);
if (grad_output.is_mkldnn()) {
return MKLDNNTensor(grad_x, grad_output.options());
} else if (!is_channels_last){
return mkldnn_to_dense(MKLDNNTensor(grad_x, grad_output.options()));
} else {
return grad_input;
}
}
std::tuple<Tensor,Tensor> mkldnn_convolution_transpose_backward_weights(
IntArrayRef weight_size,
const Tensor& grad_output,
const Tensor& input,
IntArrayRef padding,
IntArrayRef output_padding,
IntArrayRef stride,
IntArrayRef dilation,
int64_t groups,
bool bias_defined,
bool is_channels_last) {
auto grad_y = itensor_from_tensor(grad_output, /*from_const_data_ptr*/true);
auto x = itensor_from_tensor(input, /*from_const_data_ptr*/true);
ideep::tensor grad_w, grad_b;
if (bias_defined) {
ideep::convolution_transpose_backward_weights::compute_v3(
x,
grad_y,
weight_size.vec(),
grad_w,
grad_b,
stride.vec(),
padding.vec(),
padding_r(padding, output_padding),
dilation.vec(),
groups,
is_channels_last);
} else {
ideep::convolution_transpose_backward_weights::compute_v3(
x,
grad_y,
weight_size.vec(),
grad_w,
stride.vec(),
padding.vec(),
padding_r(padding, output_padding),