forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTensorFactories.cpp
35 lines (27 loc) · 1.36 KB
/
TensorFactories.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/empty_native.h>
#endif
namespace at { namespace native {
#if AT_MKLDNN_ENABLED()
Tensor empty_mkldnn(IntArrayRef sizes, std::optional<ScalarType> dtype, std::optional<Layout> layout, std::optional<Device> device, std::optional<bool> pin_memory, std::optional<c10::MemoryFormat> optional_memory_format) {
TORCH_CHECK(
!optional_memory_format.has_value(),
"'memory_format' argument is incompatible with mkldnn tensor");
// NOTE: int32_t dims from ideep::tensor but sizes needs int64_t
// TODO: support int64_t dims in ideep::tensor to avoid extra conversion
ideep::tensor::dims dst_dims (sizes.begin(), sizes.end());
auto data_type = dtype.has_value() ? get_mkldnn_dtype(dtype.value()) : ideep::tensor::data_type::f32;
ideep::tensor it {dst_dims, data_type};
return new_with_itensor_mkldnn(std::move(it), dtype, device);
}
#else
Tensor empty_mkldnn(IntArrayRef sizes, std::optional<ScalarType> dtype, std::optional<Layout> layout, std::optional<Device> device, std::optional<bool> pin_memory, std::optional<c10::MemoryFormat> optional_memory_format) {
TORCH_CHECK(false, "empty_mkldnn: MKL-DNN build is disabled");
}
#endif // AT_MKLDNN_ENABLED()
}}