forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_subexpression_elimination.cpp
128 lines (105 loc) · 3.82 KB
/
common_subexpression_elimination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/node_hashing.h>
#include <torch/csrc/jit/jit_log.h>
#include <unordered_map>
namespace torch::jit {
namespace {
struct CommonSubexpressionEliminator {
CommonSubexpressionEliminator(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
bool run(std::function<Node*(Node*)> parent_lookup_fn) {
return run(graph_->block(), std::move(parent_lookup_fn));
}
// The function implements common subexpression elimination.
// Since the nodes are visited in topological order, one pass is enough.
// returns true if CSE made changes to a graph
bool run(Block* block, std::function<Node*(Node*)> parent_lookup_fn) {
std::unordered_set<Node*, HashNode, EqualNode> subexprs;
bool changed = false;
for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
auto node = *it;
if (node->kind() == prim::profile) {
GRAPH_DEBUG(
"Profiled nodes shouldn't be CSE'ed there's a separate pass that does dedup and merging:\n",
*node);
continue;
}
if (node->hasSideEffects()) {
GRAPH_DEBUG("Node was skipped due to side effects:\n", *node);
continue;
}
if (node->isNondeterministic()) {
GRAPH_DEBUG("Node was skipped due to its non determinism:\n", *node);
continue;
}
if (!node->blocks().empty()) {
// Traverse sub-blocks.
for (auto block : node->blocks()) {
changed |= run(block, [&](Node* n) {
auto existing = subexprs.find(n);
if (existing != subexprs.end()) {
return *existing;
}
return parent_lookup_fn(n);
});
}
continue;
}
if (getOrCreateAliasDb().hasWriters(node)) {
GRAPH_DEBUG("Node was skipped due to alias analysis result:\n", *node);
// Do NOT have enough information to do CSE on these nodes.
continue;
}
// Check for CSE opportunities in the parent block.
auto parent_lookup = parent_lookup_fn(node);
auto g_out = node->owningGraph()->outputs();
if (parent_lookup != nullptr) {
if (!getOrCreateAliasDb().safeToChangeAliasingRelationship(
node->outputs(), parent_lookup->outputs())) {
continue;
}
GRAPH_UPDATE("Replacing\n", *node, "with\n", *parent_lookup);
changed = true;
node->replaceAllUsesWith(parent_lookup);
it.destroyCurrent();
continue;
}
// Check whether the same subexpression already exists.
auto subit = subexprs.insert(node);
if (!subit.second) {
// Subexpression exists, replace the uses of node, and destroy it.
auto existing = *subit.first;
// don't introduce new aliasing among graph outputs
if (getOrCreateAliasDb().mayContainAlias(
node->outputs(), node->owningGraph()->outputs()) &&
getOrCreateAliasDb().mayContainAlias(existing->outputs(), g_out)) {
continue;
}
GRAPH_UPDATE("Replacing\n", *node, "with\n", *existing);
changed = true;
node->replaceAllUsesWith(existing);
// Destroy the node.
it.destroyCurrent();
}
}
return changed;
}
AliasDb& getOrCreateAliasDb() {
if (!alias_db_) {
alias_db_ = std::make_unique<AliasDb>(graph_);
}
return *alias_db_;
}
private:
std::unique_ptr<AliasDb> alias_db_;
std::shared_ptr<Graph> graph_;
};
} // namespace
bool EliminateCommonSubexpression(const std::shared_ptr<Graph>& graph) {
GRAPH_DUMP("Before CSE", graph);
CommonSubexpressionEliminator cse(graph);
return cse.run([](Node*) { return nullptr; });
}
} // namespace torch::jit