-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathREADME
589 lines (436 loc) · 23 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
================================================================================
TurboParser -- Dependency Parser with Linear Programming Relaxations.
Version 2.3.x
Written and maintained by André Martins (afm [at] cs.cmu.edu).
================================================================================
This file is part of TurboParser, a project started at the computational
linguistics research group, ARK (http://www.ark.cs.cmu.edu/), in Carnegie Mellon
University.
This package contains a C++ implementation of the dependency parsers described
in:
[1] André F. T. Martins, Noah A. Smith, and Eric P. Xing. 2009.
Concise Integer Linear Programming Formulations for Dependency Parsing.
In Annual Meeting of the Association for Computational Linguistics (ACL).
[2] André F. T. Martins, Noah A. Smith, and Eric P. Xing. 2009.
Polyhedral Outer Approximations with Application to Natural Language Parsing.
In International Conference on Machine Learning (ICML).
[3] André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and
Mário A. T. Figueiredo. 2010.
TurboParsers: Dependency Parsing by Approximate Variational Inference.
In Empirical Methods in Natural Language Processing (EMNLP).
[4] André F. T. Martins, Noah A. Smith, Mário A. T. Figueiredo,
Pedro M. Q. Aguiar. 2011.
Dual Decomposition With Many Overlapping Components.
In Empirical Methods in Natural Language Processing (EMNLP).
[5] André F. T. Martins, Miguel B. Almeida, Noah A. Smith. 2013.
Turning on the Turbo: Fast Third-Order Non-Projective Turbo Parsers.
In Annual Meeting of the Association for Computational Linguistics (ACL).
[6] André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A Turbo Semantic Parser with Second Order Features.
In International Workshop on Semantic Evaluation (SemEval), task 8:
Broad-Coverage Semantic Dependency Parsing.
[7] Daniel F.-González and André F. T. Martins. 2015.
Parsing As Reduction.
In Annual Meeting of the Association for Computational Linguistics (ACL).
This package allows:
- learning the parser from a treebank,
- run the parser on new data,
- evaluate the results against a gold-standard.
This software has the following external dependencies: AD3, a library for
approximate MAP inference (http://www.ark.cs.cmu.edu/AD3/); Eigen, a template
library for linear algebra; glog, a library for logging; gflags, a library
for commandline flag processing. All these libraries are free software and are
provided as tarballs in this package.
This package has been tested in several Linux platforms. It has also
successfully compiled in Mac OS X and MS Windows (using MSVC).
Since version 2.2.x, the following is also provided:
- a Python wrapper for the tagger and parser (requires Cython 0.19);
- a semantic role labeler (TurboSemanticParser) implementing ref. [6] above.
Since version 2.3.x, we also provide:
- a named entity recognizer (TurboEntityRecognizer).
- a coreference resolver (TurboCoreferenceResolver).
- a constituent parser based on dependency-to-constituent reduction,
implementing ref. [7] below.
- a dependency labeler, TurboDependencyLabeler, that can optionally be applied
after the dependency parser.
- compatibility with MS Windows (using MSVC) and with C++0x.
If there are any problems running the parser please email: afm [at] cs.cmu.edu
I will only respond to questions not answered in this README.
We would like to thank Ryan McDonald and Jason Baldridge by MSTParser
(available at http://sourceforge.net/projects/mstparser), in which the code in
this package was partly based.
================================================================================
TurboParser is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
TurboParser is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
================================================================================
Contents
================================================================================
1. Compiling
2. Example of usage
a. TurboParser
b. TurboTagger
c. Scripts
3. Running the parser
a. Input data format
b. Training the parser
c. Training the tagger
d. Running the trained tagger/parser on new data
e. Additional options
4. Installing the Python wrapper
5. Memory/Disk space and performance issues
6. Reproducing results in the ICML, ACL, and EMNLP papers
7. Reproducing results in the SemEval 2014 paper (TurboSemanticParser)
================================================================================
1. Compiling
================================================================================
To compile the code, first unzip/tar the downloaded file:
> tar -zxvf TurboParser-2.2.0.tar.gz
> cd TurboParser-2.2.0
Next, run the following command
> ./install_deps.sh
This will install all the dependencies (libraries gflags, glog, Eigen, and AD3).
Finally, type
> ./configure && make && make install
After these steps, a file named "TurboParser" and another named "TurboTagger"
should have been created under the working folder.
Before starting to use TurboParser and TurboTagger, we need to add our local
dependencies to the library path. This can be done via:
> export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:`pwd;`/deps/local/lib:"
================================================================================
2. Example Usage
================================================================================
The directory data/sample contains small samples of training and testing data.
The data format is the one used in the CoNLL-X shared task, which we describe
in the next section. The following sample files are provided:
sample_train.conll
sample_test.conll
================================================================================
2a. TurboParser
================================================================================
Before starting, we need to add our local dependencies to the library path:
> export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:`pwd;`/deps/local/lib:"
These steps will train a parser on the training data, run it on the testing
data, and evaluate the output against the gold standard:
> mkdir models
> ./TurboParser --train \
--file_train=data/sample/sample_train.conll \
--file_model=models/sample_parser.model \
--logtostderr
> ./TurboParser --test \
--evaluate \
--file_model=models/sample_parser.model \
--file_test=data/sample/sample_test.conll \
--file_prediction=data/sample/sample_test.conll.predicted \
--logtostderr
The results from running the parser are in the file
data/sample/sample_test.conll.predicted and the trained model in
models/sample_parser.model.
================================================================================
2b. TurboTagger
================================================================================
If you have not done this yet, add your local dependencies to the library path:
> export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:`pwd;`/deps/local/lib:"
The input files in TurboTagger are not CoNLL files; they have the same tabular
form, but should only have two columns, the first one for the words and the
second one for the parts-of-speech.
To test TurboTagger, run first the following script to convert the sample files
to this format:
> ./scripts/create_tagging_corpus.sh data/sample/sample_train.conll
> ./scripts/create_tagging_corpus.sh data/sample/sample_test.conll
This will create files sample_train.conll.tagging and sample_test.conll.tagging.
Then, run:
> mkdir models
> ./TurboTagger --train \
--file_train=data/sample/sample_train.conll.tagging \
--file_model=models/sample_tagger.model \
--form_cutoff=1 \
--logtostderr
> ./TurboTagger --test \
--evaluate \
--file_model=models/sample_tagger.model \
--file_test=data/sample/sample_test.conll.tagging \
--file_prediction=data/sample/sample_test.conll.tagging.predicted \
--logtostderr
The results from running the tagger are in the file
data/sample/sample_test.conll.tagging.predicted and the trained model in
models/sample_tagger.model.
================================================================================
2c. Scripts
================================================================================
Shell scripts are provided in the folder ./scripts that allow you to train,
test, and evaluate the parser and the tagger with several options.
If you type:
> cd scripts
> ./train_test_parser.sh sample
> ./train_test_tagger.sh sample
You will perform all the operations described above (the results are not
necessarily the same, since some parameter settings in the scripts may be
different).
We suggest you to look at these scripts and to edit them at your own needs.
================================================================================
3. Running the Parser
================================================================================
================================================================================
3a. Input data format
================================================================================
The data format is the same as the CONLL-X shared task.
Here is a sample of two sentences from the Dutch dataset:
1 Cathy Cathy N N eigen|ev|neut 2 su _ _
2 zag zie V V trans|ovt|1of2of3|ev 0 ROOT _ _
3 hen hen Pron Pron per|3|mv|datofacc 2 obj1 _ _
4 wild wild Adj Adj attr|stell|onverv 5 mod _ _
5 zwaaien zwaai N N soort|mv|neut 2 vc _ _
6 . . Punc Punc punt 5 punct _ _
1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _
2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _
3 met met Prep Prep voor 8 mod _ _
4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _
5 moeder moeder N N soort|ev|neut 3 obj1 _ _
6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _
7 gaan ga V V hulp|inf 6 vc _ _
8 winkelen winkel V V intrans|inf 11 cnj _ _
9 , , Punc Punc komma 8 punct _ _
10 zwemmen zwem V V intrans|inf 11 cnj _ _
11 of of Conj Conj neven 7 vc _ _
12 terrassen terras N N soort|mv|neut 11 cnj _ _
13 . . Punc Punc punt 12 punct _ _
Please go to http://ilk.uvt.nl/conll/#dataformat for more information
about the meaning of each column field.
The parser should still learn/run if some of the fields (like the FEATS field)
are filled with "_".
Note: Some datasets are available at http://ilk.uvt.nl/conll/free_data.html.
================================================================================
3b. Training the parser
================================================================================
If you have a set of labeled data, first place it in the format described
above. For example, if your training data is in a file
data/danish/danish.conll, and you want the model to be saved in a file called
models/danish/danish_parser.model, then the parser can be trained by running
the command:
> ./TurboParser --train \
--file_train=data/danish/danish_train.conll \
--file_model=models/danish_parser.model \
--logtostderr
This will train a second-order non-projective parser with features for arcs,
consecutive siblings and grandparents, using the AD3 algorithm as a decoder.
The default training algorithm is (cost-augmented) MIRA, but there are other
options (see section 3e below). It will also train a probabilistic model for
unlabeled arc-factored pruning, which is employed to reduce the number of
candidate arcs and speed up parsing.
If speed is more important than accuracy, you might want to use a simple
arc-factored model, in which case a first order pruner is not necessary.
You can set the flag --prune_basic=false to disable the first order pruner, and
--model_type=basic to use a simple arc-factored model. The command line is:
> ./TurboParser --train \
--file_train=data/danish/danish_train.conll \
--file_model=models/danish_parser.model \
--prune_basic=false \
--model_type=basic \
--logtostderr
In general, the --model_type flag is a string formed by the one or several of
the following pieces: af enables arc-factored parts (required), +cs enables
consecutive sibling parts, +gp enables grandparent parts, +as enables
arbitrary sibling parts, +np enables non-projectivity parts, +dp enables
directed path parts, +hb enables head bigram parts, +gs enables grand-sibling
(third-order) parts, +ts enables tri-sibling (third-order) parts. The following
alias are predefined: "basic" is af, "standard" is af+cs+gp, "full" is
af+cs+gp+as+hb+gs+ts. Default is "standard".
In any case, after training ends, a model file "models/danish_parser.model" will
be created. To run the parser on new data (e.g. a file
"data/danish/danish_test.conll"), issue the following command:
> ./TurboParser --test \
--evaluate \
--file_model=models/danish_parser.model \
--file_test=data/danish/danish_test.conll \
--file_prediction=data/danish/danish_test.conll.predicted \
--logtostderr
This will create a file "data/danish/danish_test.conll.predicted" with the
predictions made by the parser, and will output some accuracy and speed metrics.
NOTE: the output is unlabeled accuracy (including all punctuation).
To ignore punctuation, which is standard for English (Yamada and Matsumoto 03),
as well as the metric used in references [1] and [2] above, we provide
in this package the PERL script eval.pl, used for evaluation at CONLL-X.
Just run:
> scripts/eval.pl -b -q -g data/danish/danish_test.conll \
-s data/danish/danish_test.conll.predicted | tail -5
This script also allows performing significance tests (see
http://ilk.uvt.nl/conll/software.html for details).
================================================================================
3c. Training the tagger
================================================================================
To train the tagger, one first needs to have input files with two columns, one
with words and the other with POS tags. Here is an example for the English
Penn Treebank corpus:
Ms. NNP
Haag NNP
plays VBZ
Elianti NNP
. .
Rolls-Royce NNP
Motor NNP
Cars NNPS
Inc. NNP
said VBD
it PRP
expects VBZ
its PRP$
U.S. NNP
sales NNS
to TO
remain VB
steady JJ
at IN
about IN
1,200 CD
cars NNS
in IN
1990 CD
. .
Note: we include a script in this package (create_tagging_corpus.sh) to extract
this information from CoNLL files. See section 2b above.
Let english_ptb_train.tagging and english_ptb_test.tagging be the training and
test files in the format above. Run:
> ./TurboTagger --train \
--file_train=data/english_ptb/english_ptb_train.tagging \
--file_model=models/english_ptb_tagger.model \
--form_cutoff=1 \
--logtostderr
This will train a sequential trigram model for POS tagging. The default training
algorithm is (cost-augmented) MIRA, but there are other options (see section
3e below). For the sections 02-21 of the Penn Treebank, training will take only
about 5 minutes.
Note the flag --form_cutoff=1, which defines a cut-off on word frequency.
Without setting this flag, performance will be substantially lower.
After training ends, a model file "models/english_ptb_tagger.model" will
be created. To run the tagger on new data (e.g. a file
"data/english_ptb/english_ptb_test.tagging"), issue the following command:
> ./TurboTagger --test \
--evaluate \
--file_model=models/english_ptb_tagger.model \
--file_test=data/english_ptb/english_ptb_test.tagging \
--file_prediction=data/english_ptb/english_ptb_test.tagging.predicted \
--logtostderr
This will create a file "data/english_ptb/english_ptb_test.conll.predicted" with
the predictions made by the tagger, and will output some accuracy and speed
metrics.
When training on 02-21 of the Penn Treebank, TurboTagger achieves an accuracy
of 96.9% in section 22 and 97.2% in section 23. Speed is about 40,000 tokens
per second, on a desktop PC with Intel Core i7 CPU @3.4 GHz and 8GB RAM.
NOTE: A script is included in this package for creating CoNLL files with the
tags predicted by TurboTagger (rather than gold tags). This requires the
original CoNLL file (assumed here to be called
data/english_ptb/english_ptb_test.conll). To run this script, do
the following:
> cd scripts
> ./create_conll_predicted_tags_corpus.sh \
../data/english_ptb/english_ptb_test.conll \
../data/english_ptb/english_ptb_test.tagging.predicted
This will create the desired CoNLL file as
"../data/english_ptb/english_ptb_test.conll.predpos".
================================================================================
3d. Running the trained tagger/parser on new data
================================================================================
This section assumes you have trained a tagger/parser model and it is stored in
a file named models/my_parser.model (or models/my_tagger.model).
First, format your data properly (section 3a).
It should be noted that the parser assumes words, lemmas, POS tags, etc.
To generate POS tags for your data you can use TurboTagger, as described above,
or another tagger of your choice. If no lemmatizer is available, just let
the LEMMA columns filled with "_", and the same for the morpho-syntactic
features. However, remember that the training and test data should be generated
the same way.
The parser also assumes that the arc label and parent index lines are
in the input. However, these can just be artificially inserted (e.g. with lines
of "LAB ... LAB" and "0 ... 0") since the parser will produce these lines
as output. The same strategy can be used for the tagger.
Hereafter, assume that the data is in a file called
"data/my_language/my_corpus.tagging" (for the tagger) or
"data/my_language/my_corpus.conll" (for the parser). Assume also that you want
to store the tagged sentences in a file named
"data/my_language/my_corpus.tagging.predicted" and the parsed sentences in a
file named "data/my_language/my_corpus.conll.predicted".
To tag, you need to run:
./TurboTagger --test \
--file_model=models/my_tagger.model \
--file_test=data/my_language/my_corpus.tagging \
--file_prediction=data/my_language/my_corpus.tagging.predicted \
--logtostderr
To parse, you need to run:
./TurboParser --test \
--file_model=models/my_parser.model \
--file_test=data/my_language/my_corpus.conll \
--file_prediction=data/my_language/my_corpus.conll.predicted \
--logtostderr
Pre-trained models for English (both taggers and parsers) can be downloaded at
http://www.ark.cs.cmu.edu/TurboParser/.
A script "parse.sh" is provided in this package that allows you to tag and parse
free text (in English, one sentence per line) with these models:
> ./scripts/parse.sh <filename>
where filename is a text file with one sentence per line. If no filename is
specified, it parses stdin, so e.g.
> echo "I solved the problem with statistics." | ./scripts/parse.sh
yields
1 I _ PRP PRP _ 2 SUB
2 solved _ VB VBD _ 0 ROOT
3 the _ DT DT _ 4 NMOD
4 problem _ NN NN _ 2 OBJ
5 with _ IN IN _ 2 VMOD
6 statistics _ NN NNS _ 5 PMOD
7 . _ . . _ 2 P
================================================================================
3e. Additional Options
================================================================================
For additional options, type:
> TurboParser --help
and
> TurboTagger --help
================================================================================
4. Installing the Python wrapper
================================================================================
A Python wrapper for the tagger and parser is provided in the folder "python".
For installation instructions, see the README file in that folder.
================================================================================
5. Memory/Disk space and performance issues
================================================================================
This parser is memory and disk space intensive.
MEMORY ISSUES
To train a large dataset (like the Penn Treebank for English), a machine with
at least 4Gb RAM is recommended.
DISK ISSUES
For English, using the Penn Treebank, model files are typically ~1GB in size.
Some cutoff options are available that can reduce the vocabulary size (type
"TurboParser --help").
PERFORMANCE ISSUES
Once a model has been trained, running the model on new data is pretty quick.
However, as with all discriminative trained parsers, it does take some time
to train a parser (e.g. training on the Penn Treebank 02-21 with the default
settings takes about 7-8 hours). This time is shortened to 1 hour using an
arc-factored model.
Here is a quick comparison of parser models and rough speeds. This is when
trained on 02-21 of the Penn Treebank; accuracies are unlabeled attachment
scores (without punctuation) in section 23. Speeds were measured in a desktop PC
with Intel Core i7 CPU 3.4 GHz and 8GB RAM.
- basic (arc-factored): 4,058 tokens per second, accuracy 91.05%.
- standard (af+cs+gp): 1,414 tokens per second, accuracy 92.81%.
- full (af+cs+gp+hb+as+gs+ts): 735 tokens per second, accuracy 93.07%.
================================================================================
6. Reproducing results in the ICML, ACL, and EMNLP papers
================================================================================
TurboParser 2.2.0 should reproduce the results in reference [5] above.
This software won't allow to reproduce exactly the results in the references
[1,2,3,4] above, because a complete refactoring was made, and a different set
of features is used.
================================================================================
7. Reproducing results in the SemEval 2014 paper (TurboSemanticParser)
================================================================================
Instructions for reproducing the results in [6] are in the README file in
folder semeval2014_data.