-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_processing.py
198 lines (177 loc) · 6.57 KB
/
image_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import boto
from boto.s3.key import Key
import skimage
from skimage.transform import resize
from skimage import io
import numpy as np
import tempfile
import os
import sys
import aws_funcs as af
import pandas as pd
class ImageProcessing(object):
def __init__(self, bucket_ls = ['ajfcapstonecars', 'ajfcapstonehome',
'ajfcapstonesavings',
'ajfcapstonespecevents',
'ajfcapstonetravel'],
img_size = 50, sample_size = None, bin_arrays = True,
bin_size=1000, save_bucket= 'ajfcapstonearrays',
name = 'arr'):
self.bucket_ls = bucket_ls
self.img_size = img_size
self.sample_size = sample_size
self.bin_size = bin_size
self.save_bucket = save_bucket
self.name = name,
print 'connecting to S3 buckets'
self.bucket_dict = self.make_bucket_dict()
print 'getting url dict'
self.url_dict = self.get_url_dict()
print 'getting url dataframe'
self.url_df = self.url_dict_2_df()
if sample_size == None:
self.sample_str = 'full'
self.sample_size = len(url_df.index)
elif sample_size == 'half':
self.sample_str = sample_size
self.sample_size = len(self.url_df.index)/2
else:
self.sample_str = str(sample_size)
self.sample_size = sample_size
print 'sampling/shuffling df'
self.sample_df = self.sample_df()
if bin_arrays == True:
self.bin_save_arrs()
else:
self.process_imgs()
def make_bucket_dict(self):
'''
input: self
output: dictionary where keys are bucket names and values are the objects
connecting to the buckets
'''
b_dict = {}
for bucket in self.bucket_ls:
b_dict[bucket] = af.connect_2_s3_bucket(bucket)
return b_dict
def get_url_dict(self):
'''
input: self
output: dictionary where key is name of s2 bucket and value is list of
urls within the bucket
'''
d = {}
for k, v in self.bucket_dict.items()
d[k] = [f.name for f in v.list()]
return d
def url_dict_2_df(self):
'''
input: self
output: dataframe containing the data from the passed dictionary.
2 columns (url, bucket)
'''
d = {}
for key in self.get_url_dict:
df = pd.DataFrame({'url': url_dict[key],
'bucket': [key for x in url_dict[key]]})
d[key] = df
full_df = pd.concat([d[key] for key in d], axis = 0, ignore_index = True)
return full_df
def sample_df(self):
'''
input: self
output: a dataframe randomly sampled from input dataframe
'''
return self.url_df.sample(n=self.sample_size)
def build_np_arrs(self, df):
'''
input: self,
df = df from which to build arrays
output: X(IVs), and y(target) arrays
'''
temp_dir = tempfile.mkdtemp()
X = np.empty((len(df.index), 3,
self.img_size, self.img_size))
fill = np.empty((3, self.img_size, self.img_size))
c = 0
ind_list = []
for ind, i in enumerate(df.index.copy()):
if ind % 1000 == 0:
print 'downloading and transforming imgs {} - {}'.format(ind,
ind + 999)
url = df.ix[i]['url']
path = temp_dir + '/' + url
k = self.bucket_dict[df.ix[i]['bucket']].get_key(url)
k.get_contents_to_filename(path)
try:
img = io.imread(path)
if img.shape[0] > 50:
resized = np.transpose(resize(img, (self.img_size,
self.img_size, 3)))
else:
raise Exception('')
except:
df.drop(i, axis = 0, inplace = True)
resized = fill
ind_list.append(ind)
X[ind,:,:,:] = resized
os.remove(path)
X = np.delete(X, ind_list, axis = 0)
os.removedirs(temp_dir)
y = pd.get_dummies(df['bucket']).values
return X, y
def save_arrs(self, arr, name):
'''
input: arr = array to save,
output: none
saves files to bucket as name given
'''
temp_dir = tempfile.mkdtemp()
name = name + '.npy'
fp = temp_dir + '/' + name
np.save(fp, arr)
b = af.connect_2_s3_bucket(self.save_bucket)
k = b.new_key(name)
k.set_contents_from_filename(fp)
os.remove(fp)
os.removedirs(temp_dir)
return
def bin_save_arrs(self):
'''
input: self
output: None
A function to batch arrays into different files so the files are not too
large to send back and forth from S3 buckets.
'''
for x in xrange(0, len(self.sampled_df.index), self.bin_size):
print 'building bin: {}'.format(x)
bin_df = self.sampled_df.iloc[x:x+bin_size-1,:].copy()
print 'building X, y arrays'
X, y = self.build_np_arrs(bin_df)
print 'saving X array'
self.save_arrs(X,
(self.name + '_X_{}_{}_bin{}'.format(self.img_size,
self.sample_str,
x)))
print 'saving y array'
self.save_arrs(y,
(self.name + '_y_{}_{}_bin{}'.format(self.img_size,
self.sample_str,
x)))
print 'complete'
def process_imgs(self):
'''
input: self
output: none
saves processed image arrays to s3
'''
print 'building X, y arrays'
X, y = self.build_np_arrs(self.sampled_df)
print 'saving X array'
self.save_arrs(X, (self.name + '_X_{}_{}'.format(self.img_size,
self.sample_str)))
print 'saving y array'
self.save_arrs(y, (self.name + '_y_{}_{}'.format(self.img_size,
self.sample_str)))
if __name__ == '__main__':
process = ImageProcessing()