forked from gvtulder/cross-view-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwo_view_attention.py
649 lines (529 loc) · 27.1 KB
/
two_view_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# Cross-view transformers for multi-view analysis of unregistered medical images
# Copyright (C) 2021 Gijs van Tulder / Radboud University, the Netherlands
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import math
import torch
import torch.nn as nn
from torch.cuda.amp import custom_fwd, custom_bwd
import tokenizer
class TwoViewAttentionModule(nn.Module):
implementation = 'samplewise-directsum'
def __init__(self, heads, features_a, features_b, embedding, downsampling=None,
compute_coeff_l1_loss=False,
tokens=None, token_layers=1, tokenize_a=False,
tied_embeddings=False):
super().__init__()
if tokens:
# build tokenizer
if tokenize_a:
self.tokenizer_a = tokenizer.Tokenizer(features_a, tokens, token_layers)
else:
self.tokenizer_a = None
self.tokenizer_b = tokenizer.Tokenizer(features_b, tokens, token_layers)
else:
# no tokenization, use pixels directly
self.tokenizer_a = None
self.tokenizer_b = None
# embedding
self.embed_a = nn.Conv1d(features_a, heads * embedding, kernel_size=1, bias=False)
if tied_embeddings:
self.embed_b = self.embed_a
else:
self.embed_b = nn.Conv1d(features_b, heads * embedding, kernel_size=1, bias=False)
# heads combiner
self.combine_heads = nn.Conv1d(features_b * heads, features_a, kernel_size=1, bias=False)
# parameters
self.heads = heads
self.features_a = features_a
self.features_b = features_b
self.embedding = embedding
self.downsampling = downsampling if downsampling != 1 else None
self.compute_coeff_l1_loss = not (compute_coeff_l1_loss is False or compute_coeff_l1_loss is None)
def downsample(self, z):
if self.downsampling is not None:
# downsample
if z.ndim == 3:
pool_fn = nn.functional.max_pool1d
elif z.ndim == 4:
pool_fn = nn.functional.max_pool2d
elif z.ndim == 5:
pool_fn = nn.functional.max_pool3d
else:
raise ValueError('Downsampling expects 1D, 2D or 3D input.')
z = pool_fn(z, self.downsampling, ceil_mode=True)
return z
def upsample(self, s, orig_shape):
if self.downsampling is not None:
# upsample to original shape
s = nn.functional.interpolate(s, scale_factor=self.downsampling)
# crop to the correct size (max_pool may have added some padding)
s = s[[slice(0, shp) for shp in orig_shape]]
return s
def forward(self, z_a, z_b, z_a_ds=None, z_b_ds=None):
# downsample, unless downsampled z_a_ds and z_b_ds are given
if z_a_ds is None:
z_a_ds = self.downsample(z_a)
if z_b_ds is None:
z_b_ds = self.downsample(z_b)
# tokenize, if required
if self.tokenizer_a is not None:
z_a_ds_shape = z_a_ds.shape
z_a_ds, token_attn_a = self.tokenizer_a(z_a_ds)
if self.tokenizer_b is not None:
z_b_ds, _ = self.tokenizer_b(z_b_ds)
# encode attention queries for A and keys for B
# [batch, head * embedding, q1 * q2 * ...]
q = self.embed_a(z_a_ds.flatten(2))
# [batch, head * embedding, k1 * k2 * ...]
k = self.embed_b(z_b_ds.flatten(2))
if self.implementation == 'samplewise-directsum':
# [batch, q, channel], [batch]
s, l1 = MultiHeadAttentionDirectSum.apply(q.view(q.shape[0], self.heads, self.embedding, q.shape[2]),
k.view(k.shape[0], self.heads, self.embedding, k.shape[2]),
z_b_ds.flatten(2),
self.combine_heads.weight.view(self.heads, z_b_ds.shape[1], z_a_ds.shape[1]),
self.compute_coeff_l1_loss)
# [batch, channel, q]
s = s.permute(0, 2, 1)
else:
if self.implementation == 'samplewise':
# [batch, channel, head, q], [batch]
s, l1 = SamplewiseMultiHeadAttention.apply(q.view(q.shape[0], self.heads, self.embedding, q.shape[2]),
k.view(k.shape[0], self.heads, self.embedding, k.shape[2]),
z_b_ds.flatten(2), self.compute_coeff_l1_loss, 1)
elif self.implementation == 'custom-gradient':
# [batch, channel, head, q], [batch]
s, l1 = MultiHeadAttention.apply(q.view(q.shape[0], self.heads, self.embedding, q.shape[2]),
k.view(k.shape[0], self.heads, self.embedding, k.shape[2]),
z_b_ds.flatten(2), self.compute_coeff_l1_loss)
else:
assert self.implementation == 'traditional'
s, l1 = self.compute_attention(q, k, z_b_ds)
# [batch, channel * head, q]
s = s.view(s.shape[0], s.shape[1] * self.heads, -1)
# [batch, channel, q]
s = self.combine_heads(s)
# [batch, channel, q1, q2, ...]
s = s.view(s.shape[0], s.shape[1], *z_a_ds.shape[2:])
# if required, go back from tokens to pixels
if self.tokenizer_a is not None:
s = self.tokenizer_a.reverse(s, token_attn_a).view(*z_a_ds_shape)
if self.downsampling is not None:
# upsample to z_a
s = nn.functional.interpolate(s, scale_factor=self.downsampling)
# crop to the correct size (max_pool may have added some padding)
s = s[[slice(0, shp) for shp in z_a.shape]]
if self.compute_coeff_l1_loss:
return s, l1
else:
return s
def compute_attention(self, q, k, v):
# [batch, head, embedding, q]
q = q.view(q.shape[0], self.heads, q.shape[1] // self.heads, q.shape[2])
# [batch, head, embedding, k]
k = k.view(k.shape[0], self.heads, k.shape[1] // self.heads, k.shape[2])
# compute attention score for each pixel or voxel pair
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# normalization for dot product attention
norm = torch.tensor(1 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# [batch, k, head, q]
s = torch.einsum('bheq,,bhek->bkhq', q, norm, k)
if self.compute_coeff_l1_loss:
# compute l1 loss
# [batch]
l1 = torch.mean(torch.abs(s), dim=(1, 2, 3))
# use softmax over all k
s = torch.nn.functional.softmax(s, dim=1)
# [batch, k, head * q]
s = s.view(s.shape[0], s.shape[1], s.shape[2] * s.shape[3])
# compute attention-weighted representations
# [batch, channel, head * q]
s = torch.bmm(v.flatten(2), s)
if self.compute_coeff_l1_loss:
return s, l1
else:
return s
class PostAttentionCombiner(nn.Module):
# combines the features from the original view with the attention-based features from the other view
# method "add": features A + attn features from B
# method "add-linear": features A + linear(attn features from B)
# method "layernorm(add-linear+dropout)":
# layernorm(features A + dropout(linear(attn features from B)))
# method "linear-linear": linear_a(features A) + linear_b(attn features from B)
# method "concatenate": concatenate(features A, features B) on the feature dimension
def __init__(self, ndim, features_src, features_attn=None, features_out=None, method='add'):
super().__init__()
features_attn = features_attn or features_src
features_out = features_attn or features_out
self.features_out = features_out
self.method = method
if self.method == 'add':
assert features_src == features_attn
assert features_src == features_out
elif self.method == 'add-linear':
assert features_src == features_out
self.attn_linear = self.linear_map(ndim, features_attn, features_out)
elif self.method == 'ln-add-linear-do':
assert features_src == features_out
self.attn_linear = self.linear_map(ndim, features_attn, features_out)
self.attn_dropout = nn.Dropout()
self.layernorm = LayerNormND(features_out)
elif self.method == 'linear-linear':
self.src_linear = self.linear_map(ndim, features_src, features_out)
self.attn_linear = self.linear_map(ndim, features_attn, features_out)
elif self.method == 'concatenate':
self.features_out = features_src + features_attn
else:
raise ValueError('unknown combine function %s' % str(method))
def forward(self, src, attn):
if self.method == 'add':
return src + attn
elif self.method == 'add-linear':
return src + self.attn_linear(attn)
elif self.method == 'ln-add-linear-do':
return self.layernorm(src + self.attn_dropout(self.attn_linear(attn)))
elif self.method == 'linear-linear':
# mapping separately and then adding is slightly more memory-efficient than concatenating
return self.src_linear(src) + self.attn_linear(attn)
elif self.method == 'concatenate':
return torch.cat([src, attn], dim=1)
else:
raise ValueError('unknown combine function %s' % str(method))
def linear_map(self, ndim, features_from, features_to):
if ndim == 2:
return nn.Linear(features_from, features_to, bias=False)
elif ndim == 3:
return nn.Conv1d(features_from, features_to, kernel_size=1, bias=False)
elif ndim == 4:
return nn.Conv2d(features_from, features_to, kernel_size=1, bias=False)
elif ndim == 5:
return nn.Conv3d(features_from, features_to, kernel_size=1, bias=False)
else:
raise ValueError('PostAttentionCombiner expects 0D, 1D, 2D or 3D input.')
class MultiHeadAttention(torch.autograd.Function):
# Multi-head attention with custom gradients.
# Computes the full coefficient matrix and recomputes it during backpropagation.
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, q, k, v):
# compute attention score for each pixel or voxel pair
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# - values v: [batch, channel, k1 * k2 * ...]
ctx.save_for_backward(q, k, v)
# normalization for dot product attention coefficients
norm = torch.tensor(1 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# compute coefficients
# [batch, k, head, q]
coeff = torch.einsum('bheq,,bhek->bkhq', q, norm, k)
# use softmax over all k
coeff = coeff.softmax(dim=1)
# compute attention-weighted representations
# [batch, channel, head * q]
output = torch.bmm(v, coeff.flatten(2))
# [batch, channel, head, q]
return output.view(output.shape[0], output.shape[1], q.shape[1], q.shape[3])
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
# - grad_output: [batch, channel, head, q]
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# - values v: [batch, channel, k1 * k2 * ...]
q, k, v = ctx.saved_tensors
# [batch, channel, head * q]
grad_output = grad_output.flatten(2)
# normalization for dot product attention coefficients
norm = torch.tensor(1 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# compute coefficients (already computed in forward pass, but not saved)
# [batch, k, head * q]
coeff_pre_softmax = torch.einsum('bheq,,bhek->bkhq', q, norm, k).flatten(2)
# use softmax over all k
coeff_post_softmax = coeff_pre_softmax.softmax(dim=1)
# gradient for v
# [batch, channel, k]
grad_v = torch.bmm(grad_output, coeff_post_softmax.permute(0, 2, 1))
# gradient for coeff post-softmax
# [batch, k, head * q]
grad_coeff = torch.bmm(v.permute(0, 2, 1), grad_output)
# gradient for coeff pre-softmax
# [batch, k, head * q]
# use softmax
grad_coeff = torch._softmax_backward_data(grad_coeff, coeff_post_softmax, 1, coeff_pre_softmax)
# [batch, k, head, q]
grad_coeff = grad_coeff.view(k.shape[0], k.shape[3], q.shape[1], q.shape[3])
# gradient for q
# [batch, head, embedding, q]
grad_q = torch.einsum('bkhq,,bhek->bheq', grad_coeff, norm, k)
# gradient for k
# [batch, head, embedding, k]
grad_k = torch.einsum('bkhq,,bheq->bhek', grad_coeff, norm, q)
return grad_q, grad_k, grad_v, None, None
class SamplewiseMultiHeadAttention(torch.autograd.Function):
# Multi-head attention with custom gradients.
# Computes the sample-wise coefficient matrix and recomputes it during backpropagation.
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, q, k, v, mb_size=1):
# compute attention score for each pixel or voxel pair
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# - values v: [batch, channel, k1 * k2 * ...]
ctx.save_for_backward(q, k, v)
ctx.mb_size = mb_size
# normalization for dot product attention coefficients
norm = torch.tensor(1.0 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# create output
# [block, channel, head * q]
output = torch.empty((q.shape[0], v.shape[1], q.shape[1] * q.shape[3]),
dtype=v.dtype, device=v.device)
# loop over blocks of samples
for offset in range(0, q.shape[0], mb_size):
end = min(offset + mb_size, q.shape[0])
# compute coefficients
# [batch, k, head, q]
coeff = torch.einsum('bheq,,bhek->bkhq', q[offset:end], norm, k[offset:end])
# use softmax over all k
coeff = coeff.softmax(dim=1)
# compute attention-weighted representations
# [batch, channel, head * q]
torch.bmm(v[offset:end], coeff.flatten(2), out=output[offset:end])
# [batch, channel, head, q]
return output.view(q.shape[0], v.shape[1], q.shape[1], q.shape[3])
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
# - grad_output: [batch, channel, head, q]
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# - values v: [batch, channel, k1 * k2 * ...]
q, k, v = ctx.saved_tensors
mb_size = ctx.mb_size
# [batch, channel, head * q]
grad_output = grad_output.flatten(2)
# normalization for dot product attention coefficients
norm = torch.tensor(1.0 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# create outputs
grad_q = torch.empty_like(q)
grad_k = torch.empty_like(k)
grad_v = torch.empty_like(v)
# loop over blocks of samples
for offset in range(0, q.shape[0], mb_size):
end = min(offset + mb_size, q.shape[0])
# compute coefficients (already computed in forward pass, but not saved)
# [batch, k, head * q]
coeff_pre_softmax = torch.einsum('bheq,,bhek->bkhq', q[offset:end], norm, k[offset:end]).flatten(2)
# use softmax over all k
coeff_post_softmax = torch.nn.functional.softmax(coeff_pre_softmax, dim=1)
# gradient for v
# [batch, channel, k]
torch.bmm(grad_output[offset:end], coeff_post_softmax.permute(0, 2, 1), out=grad_v[offset:end])
# gradient for coeff_post_softmax
# [batch, k, head * q]
grad_coeff_post_softmax = torch.bmm(v[offset:end].permute(0, 2, 1), grad_output[offset:end])
# gradient for coeff_pre_softmax
# [batch, k, head * q]
grad_coeff_pre_softmax = torch._softmax_backward_data(grad_coeff_post_softmax, coeff_post_softmax, 1, coeff_pre_softmax)
# [batch, k, head, q]
grad_coeff_pre_softmax = grad_coeff_pre_softmax.view(coeff_pre_softmax.shape[0], k.shape[3], q.shape[1], q.shape[3])
# gradient for q
# [batch, head, embedding, q]
grad_q[offset:end] = torch.einsum('bkhq,,bhek->bheq', grad_coeff_pre_softmax, norm, k[offset:end])
# gradient for k
# [batch, head, embedding, k]
grad_k[offset:end] = torch.einsum('bkhq,,bheq->bhek', grad_coeff_pre_softmax, norm, q[offset:end])
return grad_q, grad_k, grad_v, None
class MultiHeadAttentionDirectSum(torch.autograd.Function):
# Multi-head attention with custom gradients and direct channel summing.
# Computes the sample-wise coefficient matrix for each head separately.
# Combines the (head * features) directly.
# Most memory-efficient for large q, k and for large numbers of heads.
# Repeats some computations during backpropagation.
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, q, k, v, w, compute_coeff_l1_loss, mb_size=1):
# compute attention score for each pixel or voxel pair
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# - values v: [batch, channel_in, k1 * k2 * ...]
# - weights w: [head, channel_in, channel_out]
ctx.save_for_backward(q, k, v, w)
ctx.compute_coeff_l1_loss = compute_coeff_l1_loss
ctx.mb_size = mb_size
# normalization for dot product attention coefficients
norm = torch.tensor(1 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# create output
# [block, q, channel_out]
output = torch.zeros((q.shape[0], q.shape[3], w.shape[2]), dtype=v.dtype, device=v.device)
if compute_coeff_l1_loss:
l1 = torch.zeros((q.shape[0],), dtype=v.dtype, device=v.device)
# loop over heads
for head in range(q.shape[1]):
# loop over blocks of samples
for offset in range(0, q.shape[0], mb_size):
end = min(offset + ctx.mb_size, q.shape[0])
# compute coefficients
# [batch, q, k] <- [batch, q, embedding] * [batch, embedding, k]
coeff_pre_softmax = torch.bmm(q[offset:end, head].permute(0, 2, 1) * norm, k[offset:end, head])
# use softmax over all k
# [batch, q, k]
coeff_post_softmax = coeff_pre_softmax.softmax(dim=2)
if compute_coeff_l1_loss:
# compute l1 loss
# [batch]
l1[offset:end] += torch.mean(coeff_pre_softmax.abs_(), dim=(1, 2))
# release memory
del coeff_pre_softmax
# compute attention-weighted representations
# [batch, q, channel_in] <- [batch, q, k] * [batch, k, channel_in]
feat = torch.bmm(coeff_post_softmax, v[offset:end].permute(0, 2, 1))
# compute weighted feature combination
# [batch * q, channel_out] <- [batch * q, channel_in] * [channel_in, channel_out]
torch.addmm(output[offset:end].view(-1, output.shape[2]),
feat.view(-1, feat.shape[2]), w[head],
out=(output[offset:end].view(-1, output.shape[2])))
if compute_coeff_l1_loss:
# compute mean over heads
l1 /= q.shape[1]
# [batch, q, channel_out], [batch]
return output, l1
else:
# [batch, q, channel_out]
return output
@staticmethod
@custom_bwd
def backward(ctx, grad_output, grad_l1=None):
# - grad_output: [batch, q, channel_out]
# - grad l1: [batch]
# - queries q: [batch, head, embedding, q1 * q2 * ...]
# - keys k: [batch, head, embedding, k1 * k2 * ...]
# - values v: [batch, channel_in, k1 * k2 * ...]
# - weights w: [head, channel_in, channel_out]
q, k, v, w = ctx.saved_tensors
compute_coeff_l1_loss = ctx.compute_coeff_l1_loss
mb_size = ctx.mb_size
# normalization for dot product attention coefficients
norm = torch.tensor(1 / math.sqrt(k.shape[2]), device=q.device, dtype=q.dtype)
# create outputs
grad_q = torch.empty_like(q)
grad_k = torch.empty_like(k)
grad_v = torch.zeros_like(v)
grad_w = torch.zeros_like(w)
if compute_coeff_l1_loss:
# l1 is the mean over heads and coefficients
grad_l1 = grad_l1 / (q.shape[1] * q.shape[3] * k.shape[3])
# loop over heads
for head in range(q.shape[1]):
# loop over blocks of samples
for offset in range(0, q.shape[0], mb_size):
end = min(offset + ctx.mb_size, q.shape[0])
# compute coefficients (already computed in forward pass, but not saved)
# [batch, q, k] <- [batch, q, embedding] * [batch, embedding, k]
coeff_pre_softmax = torch.bmm(q[offset:end, head].permute(0, 2, 1) * norm, k[offset:end, head])
# use softmax over all k
# [batch, q, k]
# use softmax over all k
coeff_post_softmax = coeff_pre_softmax.softmax(dim=2)
# compute attention-weighted representations
# [batch, q, channel_in] <- [batch, q, k] * [batch, k, channel_in]
feat = torch.bmm(coeff_post_softmax, v[offset:end].permute(0, 2, 1))
# gradient for w
# [channel_in, channel_out] <- [batch, q, channel_in] * [batch, q, channel_out]
grad_w[head] += torch.einsum('bqi,bqo->io', feat, grad_output[offset:end])
# gradient for feat
# [batch, q, channel_in] <- [channel_in, channel_out] * [batch, q, channel_out]
grad_feat = torch.einsum('io,bqo->bqi', w[head], grad_output[offset:end])
# gradient for v
# [batch, channel_in, k] <- [batch, channel_in, q] * [batch, q, k]
grad_v[offset:end] += torch.bmm(grad_feat.permute(0, 2, 1), coeff_post_softmax)
# gradient for coeff post-softmax
# [batch, q, k] <- [batch, q, channel_in] * [batch, channel_in, k]
grad_coeff = torch.bmm(grad_feat, v[offset:end])
# gradient for coeff pre-softmax
# [batch, q, k]
# use softmax
grad_coeff = torch._softmax_backward_data(grad_coeff, coeff_post_softmax, 2, coeff_pre_softmax)
if compute_coeff_l1_loss:
# add gradient from L1 loss
# (grad_l1 is already divided by the number of elements to represent the mean)
# [batch, q, k] <- [batch, q, k] * [batch, None, None]
grad_coeff.addcmul_(coeff_pre_softmax.sign_(), grad_l1[offset:end, None, None])
# release memory
del coeff_pre_softmax
# gradient for q
# [batch, embedding, q] <- [batch, embedding, k] * [batch, k, q]
torch.bmm(k[offset:end, head] * norm, grad_coeff.permute(0, 2, 1), out=grad_q[offset:end, head])
# gradient for k
# [batch, embedding, k] <- [batch, embedding, q] * [batch, q, k]
torch.bmm(q[offset:end, head] * norm, grad_coeff, out=grad_k[offset:end, head])
return grad_q, grad_k, grad_v, grad_w, None, None, None
class LayerNormND(nn.Module):
# apply LayerNorm to the final dimension
def __init__(self, hidden_size, eps=1e-12):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
shp = x.shape
x = x.view(shp[0], shp[1], -1)
u = x.mean(2, keepdim=True)
s = (x - u).pow(2).mean(2, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
x = self.weight[:, None] * x + self.bias[:, None]
return x.view(*shp)
class DummyContext():
def save_for_backward(self, *args):
self.saved_tensors = args
if __name__ == '__main__':
import timeit
batch = 3
head = 5
embedding = 7
q1 = 5
k1 = 7
channel = 4
# batch = 3
# head = 2
# embedding = 2
# q1 = 2
# k1 = 2
# channel = 2
device = 'cpu'
q = torch.randn([batch, head, embedding, q1], dtype=torch.double, requires_grad=True, device=device)
k = torch.randn([batch, head, embedding, k1], dtype=torch.double, requires_grad=True, device=device)
v = torch.randn([batch, channel, k1], dtype=torch.double, requires_grad=True, device=device)
w_random = torch.randn([head, channel, channel], dtype=torch.double, requires_grad=True, device=device)
w_eye = torch.eye(channel, dtype=torch.double, requires_grad=True, device=device).repeat(head, 1, 1)
print('SampleWiseMultiHeadAttention')
SamplewiseMultiHeadAttention.apply(q, k, v)
print('MultiHeadAttention')
MultiHeadAttention.apply(q, k, v)
print('MultiHeadAttentionDirectSum')
MultiHeadAttentionDirectSum.apply(q, k, v, w_random, True)
print(torch.allclose(MultiHeadAttention.apply(q, k, v).sum(dim=2).permute(0, 2, 1),
MultiHeadAttentionDirectSum.apply(q, k, v, w_eye, False)))
print(torch.allclose(MultiHeadAttention.apply(q, k, v),
SamplewiseMultiHeadAttention.apply(q, k, v)))
result = torch.autograd.gradcheck(MultiHeadAttentionDirectSum.apply,
(q, k, v, w_random, True), eps=1e-6, atol=1e-4)
print('gradcheck MultiHeadAttentionDirectSum', result)
result = torch.autograd.gradcheck(MultiHeadAttention.apply,
(q, k, v), eps=1e-6, atol=1e-4)
print('gradcheck MultiHeadAttention', result)
result = torch.autograd.gradcheck(SamplewiseMultiHeadAttention.apply,
(q, k, v), eps=1e-6, atol=1e-4)
print('gradcheck SamplewiseMultiHeadAttention', result)