-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathindex.js
executable file
·526 lines (467 loc) · 16.6 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
// Based on an original demo at https://github.com/tensorflow/magenta-demos/tree/master/sketch-rnn-js.
// See LICENSE for full attribution and license details
dl = deeplearn;
math = dl.ENV.math;
const sketch = function (p) {
"use strict";
const classList = [
'ant',
'ambulance',
'angel',
'alarm_clock',
'antyoga',
'backpack',
'barn',
'basket',
'bear',
'bee',
'beeflower',
'bicycle',
'bird',
'book',
'brain',
'bridge',
'bulldozer',
'bus',
'butterfly',
'cactus',
'calendar',
'castle',
'cat',
'catbus',
'catpig',
'chair',
'couch',
'crab',
'crabchair',
'crabrabbitfacepig',
'cruise_ship',
'diving_board',
'dog',
'dogbunny',
'dolphin',
'duck',
'elephant',
'elephantpig',
'everything',
'eye',
'face',
'fan',
'fire_hydrant',
'firetruck',
'flamingo',
'flower',
'floweryoga',
'frog',
'frogsofa',
'garden',
'hand',
'hedgeberry',
'hedgehog',
'helicopter',
'kangaroo',
'key',
'lantern',
'lighthouse',
'lion',
'lionsheep',
'lobster',
'map',
'mermaid',
'monapassport',
'monkey',
'mosquito',
'octopus',
'owl',
'paintbrush',
'palm_tree',
'parrot',
'passport',
'peas',
'penguin',
'pig',
'pigsheep',
'pineapple',
'pool',
'postcard',
'power_outlet',
'rabbit',
'rabbitturtle',
'radio',
'radioface',
'rain',
'rhinoceros',
'rifle',
'roller_coaster',
'sandwich',
'scorpion',
'sea_turtle',
'sheep',
'skull',
'snail',
'snowflake',
'speedboat',
'spider',
'squirrel',
'steak',
'stove',
'strawberry',
'swan',
'swing_set',
'the_mona_lisa',
'tiger',
'toothbrush',
'toothpaste',
'tractor',
'trombone',
'truck',
'whale',
'windmill',
'yoga',
'yogabicycle'
];
let isWaitingForHallucination = false;
// sketch_rnn model
let model;
let temperature = 0.25;
const minimumSequenceLength = 5; // We don't bother with predictions when we have fewer than this many samples.
const defaultModel = "cat";
let lastCommittedModelState; // RNN state as of the last time the pen lifted
let currentModelState; // the more ephemeral RNN state, built on lastCommittedModelState, adding in the current stroke as it evolves
let lastMouseState = null;
let startingMouseState = null;
const epsilon = 2.0; // we ignore mouse movement under this threshold
let simplifiedRawLines;
let pendingRawLine;
let pendingStrokeIndex;
let strokes;
p.colorMode(p.HSB, 100);
const lineColor = p.color(0, 0, 0);
const hallucinationLineColor = p.color(30, 40, 90, 100);
const hallucinatedSampleCount = 25; // How many steps forward do we project?
let drawingGraphics = null;
let hallucinationGraphics = null;
let timeSamples = [];
// UI
let screenWidth,
screenHeight;
const lineWidth = 2.0;
const screenScaleFactor = 3.0;
const init = function () {
ModelImporter.set_init_model(model_raw_data);
model = new SketchRNN(ModelImporter.get_model_data());
screenWidth = p.windowWidth;
screenHeight = p.windowHeight;
// Wire up the UI controls.
document
.getElementById("clearButton")
.onclick = onClear;
const selectElement = document.getElementById("model");
for (let i = 0; i < classList.length; i++) {
const optionElement = document.createElement("option");
const formattedLabel = classList[i].replace("_", " ");
optionElement.innerHTML = formattedLabel
.charAt(0)
.toUpperCase() + formattedLabel.slice(1);
optionElement.setAttribute("value", classList[i]);
if (classList[i] === defaultModel) {
optionElement.setAttribute("selected", true);
}
selectElement.appendChild(optionElement);
}
selectElement.onchange = onModelSelection;
};
const disposeModelState = function (modelState) {
if (modelState) {
for (let component of modelState) {
component.dispose();
}
}
}
const currentScaleFactor = function () {
return model
.get_info()
.scale_factor / screenScaleFactor;
}
const scaleScreenSpaceStrokeSample = function (screenSpaceStrokeSample) {
const scaleFactor = currentScaleFactor();
return [
screenSpaceStrokeSample[0] / scaleFactor,
screenSpaceStrokeSample[1] / scaleFactor,
screenSpaceStrokeSample[2]
];
}
const setIsLoading = function (isLoadingState) {
const loadingElement = document.getElementById("loading");
if (/Safari/.test(window.navigator.userAgent) && !/Chrome/.test(window.navigator.userAgent)) {
loadingElement.innerHTML = "<p>Alas, Safari is unsupported; try Chrome?</p>"
} else {
document.getElementById("loading").style.opacity = isLoadingState ? 1 : 0;
}
}
let lastHallucinationStartPoint = null;
const restart = function () {
// make sure we enforce some minimum size of our demo
screenWidth = Math.max(window.innerWidth, 480);
screenHeight = Math.max(window.innerHeight, 320);
// variables for the sketch input interface.
simplifiedRawLines = [];
pendingRawLine = [];
strokes = [];
pendingStrokeIndex = null;
lastMouseState = null;
startingMouseState = null;
lastHallucinationStartPoint = null;
disposeModelState(lastCommittedModelState);
lastCommittedModelState = null;
disposeModelState(currentModelState);
currentModelState = null;
};
const clearScreen = function () {
p.background(0, 0, 100, 100);
hallucinationGraphics.background(0, 0, 100, 100);
drawingGraphics.clear();
};
p.setup = function () {
init();
const mainCanvasPixelDensity = p.pixelDensity();
hallucinationGraphics = p.createGraphics(screenWidth * mainCanvasPixelDensity, screenHeight * mainCanvasPixelDensity);
drawingGraphics = p.createGraphics(screenWidth * mainCanvasPixelDensity, screenHeight * mainCanvasPixelDensity);
const prepareRenderer = (renderer) => {
renderer.pixelDensity(1);
renderer.scale(mainCanvasPixelDensity, mainCanvasPixelDensity);
renderer.colorMode(p.HSB, 100);
}
prepareRenderer(hallucinationGraphics)
prepareRenderer(drawingGraphics)
restart();
p.createCanvas(screenWidth, screenHeight);
p.frameRate(60);
clearScreen();
// Preheat the shader stages used in the hallucination pipeline: it takes a
// second or two the first time.
hallucinate(model.update(model.zero_input(), model.zero_state()), [model.zero_input()]);
console.log('ready.');
setIsLoading(false);
};
const updateModelStateUsingCurrentStrokes = (isFinished) => {
// We smooth the user input to reduce the number of input samples to feed
// forward through the model.
const simplifiedPendingRawLine = DataTool.simplify_line(pendingRawLine);
if (simplifiedPendingRawLine.length <= 1) {
return;
}
// Have we recorded any simplified lines for this stroke yet? Update if so, append if not.
if (pendingStrokeIndex !== null) {
simplifiedRawLines[simplifiedRawLines.length - 1] = simplifiedPendingRawLine;
} else {
simplifiedRawLines.push(simplifiedPendingRawLine);
}
// Where did the previous stroke end? For the first stroke: where did it all
// begin? We need this because the network is trained on all relative motion.
let previousStrokeFinalX = startingMouseState.x,
previousStrokeFinalY = startingMouseState.y;
if (strokes.length > 0) {
const lastCommittedRawLineIndex = simplifiedRawLines.length - (lastMouseState.down
? 2
: 1);
if (lastCommittedRawLineIndex >= 0) {
const lastCommittedPoint = simplifiedRawLines[lastCommittedRawLineIndex][simplifiedRawLines[lastCommittedRawLineIndex].length - 1];
previousStrokeFinalX = lastCommittedPoint[0];
previousStrokeFinalY = lastCommittedPoint[1];
}
}
// Convert that smoothed stroke to the format the model expects and update our
// internal state.
const stroke = DataTool.line_to_stroke(simplifiedPendingRawLine, [
previousStrokeFinalX, previousStrokeFinalY
], isFinished);
if (pendingStrokeIndex !== null) {
strokes = strokes
.slice(0, pendingStrokeIndex)
.concat(stroke);
} else {
pendingStrokeIndex = strokes.length;
strokes = strokes.concat(stroke);
}
// Update our RNN state with the new strokes.
if (strokes.length > minimumSequenceLength) {
disposeModelState(currentModelState);
if (lastCommittedModelState) {
currentModelState = model.copy_state(lastCommittedModelState);
} else {
currentModelState = model.zero_state();
}
if (pendingStrokeIndex === 0) {
currentModelState = model.update(model.zero_input(), currentModelState);
}
// Encode each sample in the latest stroke.
for (let i = pendingStrokeIndex; i < strokes.length - 1; i++) {
currentModelState = model.update(scaleScreenSpaceStrokeSample(strokes[i]), currentModelState);
}
// If the pen was just lifted, copy the pending model state onto the base state.
if (strokes[strokes.length - 1][2] === 1) {
disposeModelState(lastCommittedModelState);
lastCommittedModelState = model.copy_state(currentModelState);
}
}
}
const hallucinate = function (modelState, strokes) {
if (isWaitingForHallucination) {
return;
}
isWaitingForHallucination = true;
const lastStroke = strokes[strokes.length - 1];
let lastSample = scaleScreenSpaceStrokeSample(lastStroke);
let concatenatedSamples = null;
let sampleCount = 0;
let hallucinatedState = model.copy_state(modelState);
while (sampleCount < hallucinatedSampleCount) {
math.scope((keep, track) => {
const oldModelState = hallucinatedState;
hallucinatedState = model.update(lastSample, hallucinatedState);
disposeModelState(oldModelState);
hallucinatedState.forEach(keep);
const modelPDF = model.get_pdf(hallucinatedState);
const output = model.sample(modelPDF, temperature);
if (concatenatedSamples) {
const oldConcatenatedSample = concatenatedSamples;
concatenatedSamples = keep(math.concat2D(concatenatedSamples, output.as2D(1, output.size), 0));
oldConcatenatedSample.dispose();
} else {
concatenatedSamples = keep(output.as2D(1, output.size));
}
if (lastSample instanceof dl.Array1D) {
lastSample.dispose();
}
lastSample = keep(output);
sampleCount += 1;
})
}
disposeModelState(hallucinatedState);
lastSample.dispose();
const startTime = Date.now();
concatenatedSamples
.data()
.then((data) => {
concatenatedSamples.dispose();
// Process performance logs.
const dt = Date.now() - startTime;
timeSamples.push(dt);
if (timeSamples.length > 100) {
timeSamples.sort((a, b) => a - b);
console.log(`Median: ${timeSamples[Math.ceil(timeSamples.length / 2)]}; Min: ${timeSamples[0]}; Max: ${timeSamples[timeSamples.length - 1]}`);
timeSamples = [];
}
isWaitingForHallucination = false;
if (!currentModelState) {
// If we've reset since the GPU request was made, bail. This is only a weak
// heuristic, rather than a rigorous queue/sequencing, but it's fine for this
// demo.
return;
}
// Find the point where the hallucination should start.
const lastRawLineIndex = simplifiedRawLines.length - 1;
const lastPoint = simplifiedRawLines[lastRawLineIndex][simplifiedRawLines[lastRawLineIndex].length - 1];
let hallucinationX = lastPoint[0];
let hallucinationY = lastPoint[1];
// Fade out the previous hallucinations according to how far the user's moved.
if (lastHallucinationStartPoint) {
const dx = lastMouseState.x - lastHallucinationStartPoint[0];
const dy = lastMouseState.y - lastHallucinationStartPoint[1];
const drawingLengthSinceLastHallucination = lastMouseState.down
? Math.sqrt(dx * dx + dy * dy)
: 10;
hallucinationGraphics.background(0, 0, 100, p.lerp(10, 90, drawingLengthSinceLastHallucination / 30));
}
lastHallucinationStartPoint = [hallucinationX, hallucinationY];
const effectiveScaleFactor = currentScaleFactor();
hallucinationGraphics.stroke(hallucinationLineColor);
for (let sampleIndex = 0; sampleIndex < sampleCount; sampleIndex++) {
const baseIndex = sampleIndex * 5;
const hallucinationDX = data[baseIndex + 0] * effectiveScaleFactor;
const hallucinationDY = data[baseIndex + 1] * effectiveScaleFactor;
if (data[baseIndex + 4]) { // Corresponds to the logit for "end of drawing"
break;
}
// We'll fade the line out over the last few samples.
const alpha = p.lerp(100, 0, (sampleIndex - (hallucinatedSampleCount - 15)) / 15)
const currentColor = p.color(hallucinationLineColor);
currentColor.setAlpha(alpha);
hallucinationGraphics.strokeWeight(lineWidth);
hallucinationGraphics.stroke(currentColor);
const isContinuingStroke = strokes[strokes.length - 1][2] === 0; // Look at the last pen index.
if (sampleIndex > 0 && data[baseIndex - 5 + 2] || (sampleIndex === 0 && isContinuingStroke)) {
hallucinationGraphics.line(hallucinationX, hallucinationY, hallucinationX + hallucinationDX, hallucinationY + hallucinationDY);
if (data[baseIndex + 3]) {
hallucinationGraphics.fill(0, 0, 255, 255);
hallucinationGraphics.strokeWeight(1);
hallucinationGraphics.ellipse(hallucinationX + hallucinationDX, hallucinationY + hallucinationDY, 5, 5);
}
} else if ((sampleIndex > 0 && data[baseIndex - 5 + 3] && data[baseIndex + 2]) || (sampleIndex === 0 && !isContinuingStroke)) {
hallucinationGraphics.fill(currentColor);
hallucinationGraphics.ellipse(hallucinationX + hallucinationDX, hallucinationY + hallucinationDY, 3, 3);
}
hallucinationX += hallucinationDX;
hallucinationY += hallucinationDY;
}
});
}
p.draw = function () {
const mouseState = {
x: p.mouseX,
y: p.mouseY,
down: p.mouseIsPressed
};
// record pen drawing from user:
if (mouseState.down && (mouseState.x > 0) && mouseState.y < (screenHeight - 90)) { // pen is touching the paper
if (lastMouseState === null) { // first time anything is written
startingMouseState = mouseState;
lastMouseState = mouseState;
document.getElementById("hint").style.opacity = 0;
}
// Have we moved far enough to bother drawing anything?
const dx = mouseState.x - lastMouseState.x;
const dy = mouseState.y - lastMouseState.y;
if (dx * dx + dy * dy > epsilon * epsilon) {
if (lastMouseState.down) {
drawingGraphics.stroke(lineColor);
drawingGraphics.strokeWeight(lineWidth);
drawingGraphics.line(lastMouseState.x, lastMouseState.y, lastMouseState.x + dx, lastMouseState.y + dy); // draw line connecting prev point to current point.
}
pendingRawLine.push([mouseState.x, mouseState.y]);
updateModelStateUsingCurrentStrokes(false);
lastMouseState = mouseState;
}
} else if (lastMouseState !== null) { // pen is above the paper
updateModelStateUsingCurrentStrokes(true);
pendingRawLine = [];
pendingStrokeIndex = null;
lastMouseState = mouseState;
}
if (currentModelState) {
hallucinate(currentModelState, strokes);
}
const canvasScaleFactor = p.pixelDensity();
p.image(hallucinationGraphics, 0, 0, screenWidth, screenHeight, 0, 0, screenWidth * canvasScaleFactor, screenHeight * canvasScaleFactor);
p.image(drawingGraphics, 0, 0, screenWidth, screenHeight, 0, 0, screenWidth * canvasScaleFactor, screenHeight * canvasScaleFactor);
};
const onModelSelection = function (event) {
const c = event.target.value;
const modelMode = "gen";
console.log("user wants to change to model " + c);
setIsLoading(true);
const callback = function (newModel) {
setIsLoading(false);
model = newModel;
restart();
clearScreen();
}
ModelImporter.change_model(model, c, modelMode, callback);
};
const onClear = function () {
restart();
clearScreen();
};
};
const p5Instance = new p5(sketch, 'sketch');