-
Notifications
You must be signed in to change notification settings - Fork 3
/
km.mod
102 lines (82 loc) · 1.96 KB
/
km.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
COMMENT
km.mod
Potassium channel, Hodgkin-Huxley style kinetics
Based on I-M (muscarinic K channel)
Slow, noninactivating
Author: Zach Mainen, Salk Institute, 1995, [email protected]
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX km
USEION k READ ek WRITE ik
RANGE n, gk, gbar
RANGE ninf, ntau
GLOBAL Ra, Rb
GLOBAL q10, temp, tadj, vmin, vmax
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
PARAMETER {
v (mV)
dt (ms)
gbar = 10 (pS/um2) : 0.03 mho/cm2
tha = -30 (mV) : v 1/2 for inf
qa = 9 (mV) : inf slope
Ra = 0.001 (/ms) : max act rate (slow)
Rb = 0.001 (/ms) : max deact rate (slow)
celsius (degC)
temp = 23 (degC) : original temp
q10 = 2.3 : temperature sensitivity
vmin = -120 (mV)
vmax = 100 (mV)
}
ASSIGNED {
a (/ms)
b (/ms)
ik (mA/cm2)
gk (pS/um2)
ek (mV)
ninf
ntau (ms)
tadj
}
STATE { n }
INITIAL {
trates(v)
n = ninf
}
BREAKPOINT {
SOLVE states
gk = tadj*gbar*n
ik = (1e-4) * gk * (v - ek)
}
LOCAL nexp
PROCEDURE states() { : Computes state variable n
trates(v) : at the current v and dt.
n = n + nexp*(ninf-n)
VERBATIM
return 0;
ENDVERBATIM
}
PROCEDURE trates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL tinc
TABLE ninf, nexp
DEPEND dt, celsius, temp, Ra, Rb, tha, qa
FROM vmin TO vmax WITH 199
rates(v): not consistently executed from here if usetable_hh == 1
tadj = q10^((celsius - temp)/10) :temperature adjastment
tinc = -dt * tadj
nexp = 1 - exp(tinc/ntau)
}
PROCEDURE rates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
a = Ra * (v - tha) / (1 - exp(-(v - tha)/qa))
b = -Rb * (v - tha) / (1 - exp((v - tha)/qa))
ntau = 1/(a+b)
ninf = a*ntau
}