-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpbt_tf.py
267 lines (216 loc) · 12.8 KB
/
pbt_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import sys
import os
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def main(_):
# we need to provide all ps and worker info to each server so they are aware of each other
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# create and start a server for the local task.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
# log each worker seperately for tensorboard
# https://github.com/tensorflow/tensorboard/blob/master/README.md#runs-comparing-different-executions-of-your-model
logs_path = os.path.join(os.getcwd(), 'logs', '{}'.format(FLAGS.task_index))
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# explictely place weights and hyperparameters on the worker servers to prevent sharing
# otherwise replica_device_setter will put them on the ps
with tf.device("/job:worker/task:{}".format(FLAGS.task_index)):
theta = tf.get_variable('theta'.format(FLAGS.task_index), initializer=tf.random_uniform(shape=[2]))
h = tf.get_variable('h', initializer=tf.random_uniform(shape=[2]), trainable=False)
worker_idx = tf.constant(FLAGS.task_index, dtype=tf.float32)
# use replica_device_setter to automatically set device-ops
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
#can't modify MutableHashTable once MTS finalizes the graph,
#although a mapped assign might work
# num_workers = len(worker_hosts)
# global_weights = tf.contrib.lookup.MutableHashTable(
# key_dtype=tf.string, # worker idx (int doesn't work here)
# value_dtype=tf.float32, # weights
# default_value=-999,
# )
with tf.name_scope('global_variables'):
best_worker_idx = tf.get_variable(
name='best_idx', dtype=tf.float32, # must be float for tf.cond
initializer=tf.constant(-1.), trainable=False)
idx_placeholder = tf.placeholder(dtype=tf.float32, shape=[])
best_worker_weight = tf.get_variable(
name='best_weight',dtype=tf.float32,
initializer=tf.constant([-1., -1.]), trainable=False)
best_worker_loss = tf.get_variable(
name='best_loss', dtype=tf.float32,
initializer=tf.constant(999.), trainable=False)
with tf.name_scope('main_graph'):
# create model
surrogate_obj = 1.2 - tf.reduce_sum(tf.multiply(h, tf.square(theta)))
obj = 1.2 - tf.reduce_sum(tf.square(theta))
loss = tf.square((obj - surrogate_obj))
optimizer = tf.train.AdamOptimizer(1e-1)
train_step = optimizer.minimize(loss)
tf.summary.scalar('surrogate_obj', surrogate_obj)
tf.summary.scalar('loss', loss)
merged = tf.summary.merge_all()
with tf.name_scope('exploit_graph'):
# create mini graph for exploit updates
def exploit(
worker_idx, worker_weight, worker_loss,
best_worker_idx, best_worker_weight, best_worker_loss,
):
"""
copy weights from the member in the population with the highest performance
inputs:
-worker_idx: rank 0 tensor (device index)
-worker_weight: rank 1 tensor (weights)
-worker_loss: ...
-best_worker_idx: rank 0 tensor (global best worker in population)
-best_worker_weight: rank 1 tensor (global best weights in population)
-best_worker_los ...
returns an assign op called update
"""
def push_weights():
"""update best worker stats"""
_ = tf.Print( # add print node to the graph
input_=tf.constant(1.), # do nothing
data=[], # do nothing
message="Optimal weights found on Worker-{}".format(FLAGS.task_index)
)
update_weights_ops = best_worker_weight.assign(worker_weight)
update_idx_ops = best_worker_idx.assign(worker_idx)
update_loss_ops = best_worker_loss.assign(worker_loss)
return (_, update_weights_ops, update_idx_ops, update_loss_ops)
def pull_weights():
"""take best worker's weights"""
def do_not_pull():
"""current worker is the best worker, do nothing"""
_ = tf.Print(
input_=tf.constant(1.),
data=[],
message="Continue with current weights")
no_ops_1 = tf.identity(worker_weight)
no_ops_2 = tf.identity(worker_idx)
no_ops_3 = tf.identity(worker_loss)
return (_, no_ops_1, no_ops_2, no_ops_3)
def do_pull():
"""current worker isn't the best worker, so inherit its weights"""
_ = tf.Print(
input_=best_worker_idx,
data=[best_worker_idx],
message="Inherited optimal weights from Worker-")
update_weights_ops = worker_weight.assign(best_worker_weight)
no_ops_1 = tf.identity(worker_idx) # placeholder
no_ops_2 = tf.identity(worker_loss) # placeholder
return (_, update_weights_ops, no_ops_1, no_ops_2)
update_tuple = tf.cond(
tf.equal(best_worker_idx, worker_idx),
true_fn=do_not_pull,
false_fn=do_pull,
)
return update_tuple
update_weights = tf.cond(
tf.less(worker_loss, best_worker_loss),
true_fn=push_weights,
false_fn=pull_weights,
)
# # for debug 1
# _ = tf.Print(
# input_=[worker_loss, best_worker_loss],
# data=[worker_loss, best_worker_loss, best_worker_idx],
# )
# return _, update_weights
return update_weights
do_exploit = exploit(
worker_idx, theta, loss,
best_worker_idx, best_worker_weight, best_worker_loss)
with tf.name_scope('explore_graph'):
def explore(h):
return h.assign(h + tf.random_normal(shape=[2]) * 0.1)
do_explore = explore(h)
with tf.name_scope('update_graph'):
"""
update global best worker at each step
"""
def update(
worker_idx, theta, loss,
best_worker_idx, best_worker_weight, best_worker_loss
):
"""return assign ops"""
def do_update():
"""update best worker stats"""
# we dont exploit hyperparams in this model, so no update_best_hyperparams
update_best_loss_ops = best_worker_loss.assign(loss)
update_best_weights_ops = best_worker_weight.assign(theta)
update_best_idx_ops = best_worker_idx.assign(worker_idx)
return (update_best_loss_ops, update_best_weights_ops, update_best_idx_ops)
def do_not_update():
"""current loss is not better than best worker loss, so do nothing"""
update_best_loss_ops = tf.identity(loss)
update_best_weights_ops = tf.identity(theta)
update_best_idx_ops = tf.identity(worker_idx)
return (update_best_loss_ops, update_best_weights_ops, update_best_idx_ops)
update_best_worker_ops = tf.cond(
tf.less(loss, best_worker_loss),
true_fn=do_update,
false_fn=do_not_update,
)
return update_best_worker_ops
do_update = update(
worker_idx, theta, loss,
best_worker_idx, best_worker_weight, best_worker_loss
)
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=True) as mon_sess:
# create log writer object (log from each machine)
writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
for step in range(50):
summary, h_, theta_, loss_, _= mon_sess.run([merged, h, theta, loss, train_step])
print("Worker {}, Step {}, h = {}, theta = {}, loss = {:0.6f}".format(
FLAGS.task_index,
step,
h_,
theta_,
loss_
))
writer.add_summary(summary, step)
if step % 5 == 0:
mon_sess.run([do_exploit]) # exploit
mon_sess.run([do_explore]) # explore
mon_sess.run([do_update]) # update
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Flags for defining the tf.train.ClusterSpec
parser.add_argument(
"--ps_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs"
)
parser.add_argument(
"--worker_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs"
)
parser.add_argument(
"--job_name",
type=str,
default="",
help="One of 'ps', 'worker'"
)
# Flags for defining the tf.train.Server
parser.add_argument(
"--task_index",
type=int,
default=0,
help="Index of task within the job"
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)