forked from minerva-ml/open-solution-cdiscount-starter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_manager.py
263 lines (199 loc) · 9.78 KB
/
run_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
from datetime import datetime
from argparse import ArgumentParser
import yaml
import struct
import bson
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from utils import register_action, neptune_post_pipeline_score, safe_sample, registered_actions, \
registered_pipelines
from pipelines import pipeline_load, pipeline_dump
@register_action
def run_pipeline(args):
train_valid_split(args)
sample(args)
train_pipeline(args)
evaluate_pipeline(args)
predict_pipeline(args)
@register_action
def train_pipeline(args):
train_meta, valid_meta = _load_meta_training(args)
if args.sample_validation:
valid_meta = valid_meta.sample(args.sample_validation, replace=False, random_state=1234)
if args.dev_mode:
train_meta = train_meta.sample(1024, replace=False, random_state=1234)
valid_meta = valid_meta.sample(128, replace=False, random_state=1234)
epochs = 2
else:
epochs = _parse_neptune_params(args, 'epochs')
train_filepath = os.path.join(args.raw_data_dir, 'train.bson')
pipeline_name = _parse_neptune_params(args, 'pipeline_name')
Pipeline = registered_pipelines[pipeline_name]
pipeline = Pipeline(num_classes=_parse_neptune_params(args, 'top_categories') + 1,
epochs=epochs,
workers=args.nb_workers,
models_dir=os.path.join(args.models_dir, 'single_models'),
)
pipeline.fit(X=train_meta, y=train_meta['category_id'],
validation_data=(valid_meta, valid_meta['category_id']),
img_dataset_filepath=train_filepath)
pipeline_filepath = os.path.join(os.path.join(args.models_dir, 'pipelines'),
'{}_{}'.format(args.name, pipeline_name))
pipeline_dump(pipeline, pipeline_filepath)
@register_action
def evaluate_pipeline(args):
train_meta, valid_meta = _load_meta_training(args)
if args.sample_validation:
valid_meta = valid_meta.sample(args.sample_validation, replace=False, random_state=1234)
if args.dev_mode:
valid_meta = valid_meta.sample(128, replace=False, random_state=1234)
train_filepath = os.path.join(args.raw_data_dir, 'train.bson')
pipeline_name = _parse_neptune_params(args, 'pipeline_name')
Pipeline = registered_pipelines[pipeline_name]
pipeline = Pipeline(num_classes=_parse_neptune_params(args, 'top_categories') + 1,
epochs=_parse_neptune_params(args, 'epochs'),
workers=args.nb_workers,
models_dir=os.path.join(args.models_dir, 'single_models'),
)
pipeline_filepath = os.path.join(os.path.join(args.models_dir, 'pipelines'),
'{}_{}'.format(args.name, pipeline_name))
pipeline = pipeline_load(pipeline, pipeline_filepath)
y_pred = pipeline.predict(X=valid_meta, img_dataset_filepath=train_filepath)
y_true = valid_meta['category_id']
score = accuracy_score(y_true, y_pred)
neptune_post_pipeline_score(score)
@register_action
def predict_pipeline(args):
test_meta = _load_meta_testing(args)
if args.dev_mode:
test_meta = test_meta.sample(128, replace=False, random_state=1234)
pipeline_name = _parse_neptune_params(args, 'pipeline_name')
Pipeline = registered_pipelines[pipeline_name]
pipeline = Pipeline(num_classes=_parse_neptune_params(args, 'top_categories') + 1,
epochs=_parse_neptune_params(args, 'epochs'),
workers=args.nb_workers,
models_dir=os.path.join(args.models_dir, 'single_models'),
)
pipeline_filepath = os.path.join(os.path.join(args.models_dir, 'pipelines'),
'{}_{}'.format(args.name, pipeline_name))
pipeline = pipeline_load(pipeline, pipeline_filepath)
test_filepath = os.path.join(args.raw_data_dir, 'test.bson')
y_test_pred = pipeline.predict(X=test_meta, img_dataset_filepath=test_filepath)
submission = test_meta[['_id']]
submission['category_id'] = y_test_pred
timestr = datetime.now().strftime("%Y%m%d-%H%M%S")
submission_filepath = os.path.join(args.submissions_dir,
'{}_{}.csv'.format('{}_{}'.format(args.name, pipeline_name), timestr))
submission.to_csv(submission_filepath, index=None)
@register_action
def sample(args):
meta_data_filepath = os.path.join(args.meta_data_processed_dir, 'meta_train_v1.csv')
meta_train = pd.read_csv(meta_data_filepath)
top_cat = _parse_neptune_params(args, 'top_categories')
img_per_cat = _parse_neptune_params(args, 'images_per_category')
meta_train_sampled = _sample_train(meta_train, top_cat, img_per_cat)
sampled_filepath = meta_data_filepath.replace('meta_train_v1',
'meta_train_v1_topcat{}_imgnr{}'.format(top_cat, img_per_cat))
meta_train_sampled.to_csv(sampled_filepath, index=None)
def _sample_train(meta, top_cat, img_per_cat):
top_ids = meta.groupby('category_id').size().sort_values(ascending=False).reset_index()[:top_cat][
'category_id'].tolist()
meta_top_categories = meta[meta['category_id'].isin(top_ids)]
meta_top_categories = meta_top_categories.groupby('category_id').apply(
lambda x: safe_sample(x, img_per_cat))
meta_top_categories = meta_top_categories.sample(frac=1, random_state=1234).reset_index(drop=True)
return meta_top_categories
@register_action
def train_valid_split(args):
meta_data_filepath = os.path.join(args.meta_data_dir, 'meta_train.csv')
meta_train_filepath = os.path.join(args.meta_data_processed_dir, 'meta_train_v1.csv')
meta_valid_filepath = os.path.join(args.meta_data_processed_dir, 'meta_valid_v1.csv')
meta_data = pd.read_csv(meta_data_filepath)
meta_train, meta_valid = train_test_split(meta_data, train_size=args.train_ratio, random_state=args.seed)
meta_train.to_csv(meta_train_filepath, index=None)
meta_valid.to_csv(meta_valid_filepath, index=None)
@register_action
def create_metadata(args):
_extract_meta(args, train=True)
_extract_meta(args, train=False)
def _extract_meta(args, train=True):
if train:
prefix = 'train'
else:
prefix = 'test'
raw_data_filepath = os.path.join(args.raw_data_dir, '{}.bson'.format(prefix))
meta_data_filepath = os.path.join(args.meta_data_dir, 'meta_{}.csv'.format(prefix))
meta = []
with open(raw_data_filepath, 'rb') as f:
offset = 0
while True:
print(offset)
f.seek(offset)
item_length_bytes = f.read(4)
if len(item_length_bytes) == 0:
break
# Decode item length:
length = struct.unpack("<i", item_length_bytes)[0]
f.seek(offset)
item_data = f.read(length)
assert len(item_data) == length, "%i vs %i" % (len(item_data), length)
# Check if we can decode
item = bson.BSON(item_data).decode()
if train:
row = (item['_id'], item['category_id'], offset, length, len(item['imgs']))
else:
row = (item['_id'], offset, length, len(item['imgs']))
meta.append(row)
offset += length
meta_df = pd.DataFrame(data=meta, columns=['_id', 'category_id', 'offset', 'length', 'num_pictures'])
meta_df.to_csv(meta_data_filepath, index=False)
def _load_meta_training(args):
top_cat = _parse_neptune_params(args, 'top_categories')
img_per_cat = _parse_neptune_params(args, 'images_per_category')
meta_valid_filepath = os.path.join(args.meta_data_processed_dir, 'meta_valid_v1.csv')
train_filename = 'meta_train_v1_topcat{}_imgnr{}'.format(top_cat, img_per_cat)
meta_train_filepath = meta_valid_filepath.replace('meta_valid_v1', train_filename)
train = pd.read_csv(meta_train_filepath)
valid = pd.read_csv(meta_valid_filepath)
return train, valid
def _load_meta_testing(args):
meta_test_filepath = os.path.join(args.meta_data_dir, 'meta_test.csv')
test = pd.read_csv(meta_test_filepath)
return test
def _parse_neptune_params(args, query_param):
params = args.properties
parsed = [param['value'] for param in params if param['key'] == query_param][0]
return parsed
def prepare_environment(args):
dir_paths = [args.submissions_dir, args.meta_data_processed_dir]
for fold in ['valid', 'test']:
dir_paths.append(os.path.join(args.predictions_dir, fold))
for model_type in ['single_models', 'pipelines']:
dir_paths.append(os.path.join(args.models_dir, model_type))
for dir_path in dir_paths:
os.makedirs(dir_path, exist_ok=True)
def parse_args():
parser = ArgumentParser()
parser.add_argument('action')
parser.add_argument('-e', '--experiment_config_file', default='experiment_config.yaml')
parser.add_argument('-c', '--data_config_file', default='data_config.yaml')
parser.add_argument('-sv', '--sample_validation', type=int, default=10000)
parser.add_argument('-w', '--nb_workers', type=int, default=4)
parser.add_argument('-m', '--dev_mode', action='store_true')
parser.add_argument('-r', '--train_ratio', type=float, default=0.8)
parser.add_argument('-s', '--seed', type=int, default=1234)
args = parser.parse_args()
with open(args.experiment_config_file) as f:
exp_config = yaml.load(f)
with open(args.data_config_file) as f:
data_config = yaml.load(f)
config_merged = {**exp_config, **data_config}
for key, value in config_merged.items():
setattr(args, key, value)
return args
if __name__ == '__main__':
args = parse_args()
prepare_environment(args)
registered_actions[args.action](args)