forked from mit-han-lab/torchquantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
callbacks.py
280 lines (220 loc) · 8.85 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
MIT License
Copyright (c) 2020-present TorchQuantum Authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import copy
import time
from typing import List, Any, Dict
import torch
import torch.nn.functional as F
import tqdm
from torch.utils.data import DataLoader
from torchpack.callbacks.callback import Callback, Callbacks
from torchpack.utils import humanize
from torchpack.utils.logging import logger
from torchpack.utils.typing import Trainer
from torchpack import distributed as dist
from torchquantum.super_utils import get_named_sample_arch
from torchquantum.util import legalize_unitary
__all__ = [
"LegalInferenceRunner",
"SubnetInferenceRunner",
"NLLError",
"TrainerRestore",
"MinError",
"AddNoiseInferenceRunner",
"GradRestore",
]
class LegalInferenceRunner(Callback):
"""
A callback that runs inference with a list of :class:`Callback`.
"""
def __init__(self, dataflow: DataLoader, *, callbacks: List[Callback]) -> None:
self.dataflow = dataflow
self.callbacks = Callbacks(callbacks)
def _set_trainer(self, trainer: Trainer) -> None:
self.callbacks.set_trainer(trainer)
def _trigger_epoch(self) -> None:
self._trigger()
def _trigger(self) -> None:
start_time = time.perf_counter()
self.callbacks.before_epoch()
with torch.no_grad():
self.trainer.legalized_model = copy.deepcopy(self.trainer.model)
legalize_unitary(self.trainer.legalized_model)
for feed_dict in tqdm.tqdm(self.dataflow, ncols=0):
self.callbacks.before_step(feed_dict)
output_dict = self.trainer.run_step(feed_dict, legalize=True)
self.callbacks.after_step(output_dict)
self.callbacks.after_epoch()
logger.info(
"Inference finished in {}.".format(
humanize.naturaldelta(time.perf_counter() - start_time)
)
)
class SubnetInferenceRunner(Callback):
"""
A callback that runs inference with a list of :class:`Callback`.
sample a subnet and run during supernet training
"""
def __init__(
self, dataflow: DataLoader, *, callbacks: List[Callback], subnet: str
) -> None:
self.dataflow = dataflow
self.callbacks = Callbacks(callbacks)
self.subnet = subnet
def _set_trainer(self, trainer: Trainer) -> None:
self.callbacks.set_trainer(trainer)
def _trigger_epoch(self) -> None:
self._trigger()
def _trigger(self) -> None:
start_time = time.perf_counter()
self.callbacks.before_epoch()
with torch.no_grad():
sample_arch = get_named_sample_arch(
self.trainer.model.arch_space, self.subnet
)
self.trainer.model.set_sample_arch(sample_arch)
for feed_dict in tqdm.tqdm(self.dataflow, ncols=0):
self.callbacks.before_step(feed_dict)
output_dict = self.trainer.run_step(feed_dict)
self.callbacks.after_step(output_dict)
self.callbacks.after_epoch()
logger.info(
"Inference finished in {}.".format(
humanize.naturaldelta(time.perf_counter() - start_time)
)
)
class AddNoiseInferenceRunner(Callback):
"""
A callback that runs inference with a list of :class:`Callback`.
sample noise and add to model during training
"""
def __init__(
self,
dataflow: DataLoader,
*,
callbacks: List[Callback],
noise_total_prob: float
) -> None:
self.dataflow = dataflow
self.callbacks = Callbacks(callbacks)
self.noise_total_prob = noise_total_prob
def _set_trainer(self, trainer: Trainer) -> None:
self.callbacks.set_trainer(trainer)
def _trigger_epoch(self) -> None:
self._trigger()
def _trigger(self) -> None:
start_time = time.perf_counter()
self.callbacks.before_epoch()
with torch.no_grad():
orig_is_add_noise = self.trainer.model.nodes[0].noise_model_tq.is_add_noise
orig_noise_total_prob = self.trainer.model.nodes[
0
].noise_model_tq.noise_total_prob
orig_mode = self.trainer.model.nodes[0].noise_model_tq.mode
for node in self.trainer.model.nodes:
node.noise_model_tq.noise_total_prob = self.noise_total_prob
node.noise_model_tq.is_add_noise = True
node.noise_model_tq.mode = "train"
for feed_dict in tqdm.tqdm(self.dataflow, ncols=0):
self.callbacks.before_step(feed_dict)
output_dict = self.trainer.run_step(feed_dict)
self.callbacks.after_step(output_dict)
for node in self.trainer.model.nodes:
node.noise_model_tq.is_add_noise = orig_is_add_noise
node.noise_model_tq.noise_total_prob = orig_noise_total_prob
node.noise_model_tq.mode = orig_mode
self.callbacks.after_epoch()
logger.info(
"Inference finished in {}.".format(
humanize.naturaldelta(time.perf_counter() - start_time)
)
)
class NLLError(Callback):
def __init__(
self,
*,
output_tensor: str = "outputs",
target_tensor: str = "targets",
name: str = "error"
) -> None:
self.output_tensor = output_tensor
self.target_tensor = target_tensor
self.name = name
def _before_epoch(self):
self.size = 0
self.errors = 0
def _after_step(self, output_dict: Dict[str, Any]) -> None:
outputs = output_dict[self.output_tensor]
targets = output_dict[self.target_tensor]
error = F.nll_loss(outputs, targets)
self.size += targets.size(0)
self.errors += error.item() * targets.size(0)
def _after_epoch(self) -> None:
self.size = dist.allreduce(self.size, reduction="sum")
self.errors = dist.allreduce(self.errors, reduction="sum")
self.trainer.summary.add_scalar(self.name, self.errors / self.size)
class MinError(Callback):
def __init__(
self,
*,
output_tensor: str = "outputs",
target_tensor: str = "targets",
name: str = "error"
) -> None:
self.output_tensor = output_tensor
self.target_tensor = target_tensor
self.name = name
def _before_epoch(self):
self.size = 0
self.errors = 0
def _after_step(self, output_dict: Dict[str, Any]) -> None:
outputs = output_dict[self.output_tensor]
targets = output_dict[self.target_tensor]
error = outputs.sum()
self.size += outputs.size(0)
self.errors += error.item()
def _after_epoch(self) -> None:
self.size = dist.allreduce(self.size, reduction="sum")
self.errors = dist.allreduce(self.errors, reduction="sum")
self.trainer.summary.add_scalar(self.name, self.errors / self.size)
class TrainerRestore(Callback):
def __init__(self, state) -> None:
self.state = state
def _before_train(self) -> None:
self.trainer.load_state_dict(self.state)
class GradRestore(Callback):
"""
A callback that restore the all the gradients among all the steps.
"""
def __init__(self) -> None:
self.trainer = None
pass
def _set_trainer(self, trainer: Trainer) -> None:
self.trainer = trainer
def _trigger_step(self) -> None:
self._trigger()
def _trigger(self) -> None:
for node in self.trainer.model.nodes:
for i, param in enumerate(node.q_layer.parameters()):
self.trainer.summary.add_scalar(
"grad/grad_" + str(i), float(param.grad)
)
self.trainer.summary.add_scalar("param/param_" + str(i), float(param))
# self.trainer.summary.writers[1].add_histogram('histogram/grad', float(param.grad))