-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
56 lines (41 loc) · 1.78 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Activation, Flatten, Dense, Input, BatchNormalization
from tensorflow.keras.models import Model
class MyModel(Model):
def __init__(self, classes = 1, chanDim=-1):
super(MyModel, self).__init__()
self.classes = classes
self.conv1 = Conv2D(64, (3, 3), padding="same", activation= 'relu')
self.bn1 = BatchNormalization(axis=chanDim)
self.conv2 = Conv2D(32, (3, 3), padding="same", activation= 'relu')
self.bn2 = BatchNormalization(axis=chanDim)
self.pool1 = MaxPooling2D(pool_size=(2, 2))
self.conv2A = Conv2D(32, (3, 3), padding="same", activation='relu')
self.bn2A = BatchNormalization(axis=chanDim)
self.pool2 = MaxPooling2D(pool_size=(2, 2))
self.flatten = Flatten()
self.dense3 = Dense(64, activation = 'relu')
self.bn3 = BatchNormalization()
self.out = Dense(classes)
self.sigmoid = Activation("sigmoid")
self.softmax = Activation("softmax")
def call(self, inputs):
#x = self.pretrained(inputs)
x = self.conv1(inputs)
#x = self.conv1(x)
x = self.bn1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.conv2A(x)
x = self.bn2A(x)
x = self.pool2(x)
x = self.flatten(x)
x = self.dense3(x)
x = self.bn3(x)
x = self.out(x)
if self.classes > 1:
x = self.softmax(x)
else:
x = self.sigmoid(x)
return x