Skip to content

Latest commit

 

History

History
214 lines (153 loc) · 10.1 KB

File metadata and controls

214 lines (153 loc) · 10.1 KB

"Buy Me A Coffee"

Tensorboard-own-image-data-image-features-embedding-visualization

Learn how to visualize your own image data or features on Tensorboard Embedding Visualizer. The video tutorial for the same is available at: https://www.youtube.com/watch?v=CNR7Wu7g2aY

Libraries:

keras-1.2.1
Tensorflow -1.0.1
python-3.5

Runing the embedding visualization using the logs given in this repository

To run the embeddings already provided in embedding-logs. Download all the files.

In the embedding-logs/checkpoint

model_checkpoint_path: "D:\\Technical_works\\tensorflow\\own-data-embedding-visualization-vgg-16/embedding-     logs\\images_4_classes.ckpt"
all_model_checkpoint_paths: "D:\\Technical_works\\tensorflow\\own-data-embedding-visualization-vgg-16/embedding-logs\\images_4_classes.ckpt"

Change the model_checkpoint_path and all_model_checkpoint_paths to your path

   In the embedding-logs/projector_config.pbtxt

        embeddings {
    tensor_name: "features:0"
    metadata_path: "D:\\Technical_works\\tensorflow\\own-data-embedding-visualization-vgg-16/embedding-logs\\metadata_4_classes.tsv"
        sprite {
    image_path: "D:\\Technical_works\\tensorflow\\own-data-embedding-visualization-vgg-16/embedding-logs\\sprite_4_classes.png"
    single_image_dim: 128
    single_image_dim: 128
    }
}

Change the metadata_path and image_path to your location where the metadata_4_classes.tsv
and sprite_4_classes.png is located.

To run the embeddings launch tensor board

 tensorboard --logdir=/path/to/your_log/embedding-logs --port=6006
 
 ## Please make sure there is no gap between the name of your directory-
    for e.g- folder name will not work it has to be folder_name
 
   Then open localhost:6006 in a browser
   
   Then go to the embedding options in Tensorboard

Alt text

To regenerate the embedding logs for feature vectors given in this repositoty

To regenerate the same embedding logs you can use the feature_vectors_400_samples.txt in the feature_vectors.zip file.

If you want to generate embedding visulaization for the given feature vector data, you can directly look into own-data-embedding-visualization.py script to visualize your feature vectors in embedding visualizer.

The code is described block wise in the next section of # Generating the embedding logs for your own feature vectors Running this script will generate the embedding logs specified to your system path . Then you can run the tensorboard using

 tensorboard --logdir=/path/to/your log/embedding-logs --port=6006
 
   Then open localhost:6006 in a browser
   
   Then go to the embedding options in Tensorboard

Data used in this Example

I have used 4 categories with 100 samples in each class - Cats, Dogs, Horses, Humans(Horse riders).The data are stored in data.zip folder The Pretrained VGG16 is used to obtain feature vector of size 4096 from the penultimate layer of the network.

Using VGG16 model to obtain feature vectors

If you want to use VGG16 as feature extractor for your own data you can look into vgg16-feature-extraction.py script. Download the VGG16 weights by reading the VGG_model/download_vgg16_weights.md and save it in VGG_model directory The script will save your extracted features in feature_vectors.txt file as well as feature_vectors.pkl file. The shape of the obtained feature vector will be (num_samples,feature_vector_size).

num_samples = number of images (in this example 400)
feature_vector_size = size of feature vector for each image (in this example its 4096)

Generating the embedding logs for your own feature vectors

If you want to generate embedding visulaization for your own feature vector data that you have- you can directly look into own-data-embedding-visualization.py script to visualize your feature vectors in embedding visualizer.

Import the modules

  import os,cv2
  import numpy as np
  import matplotlib.pyplot as plt
  import pickle # if your feature vector is stored in pickle file
  import tensorflow as tf
  from tensorflow.contrib.tensorboard.plugins import projector

Define your log directory to store the logs

   PATH = os.getcwd()
   LOG_DIR = PATH+ '/embedding-logs'

Load the feature vectors and define the feature variable

   feature_vectors = np.loadtxt('feature_vectors_400_samples.txt')
   
   # the shape of feature vectors should be (num_samples,length_of_each_feature) . eg (400,4096)
   
   print ("feature_vectors_shape:",feature_vectors.shape) 
   print ("num of images:",feature_vectors.shape[0])
   print ("size of individual feature vector:",feature_vectors.shape[1])
   
   # Load the features in a tensorflow variable 
    features = tf.Variable(feature_vectors, name='features')

Generate the metadeta files to assign class labels to the features:

   y = np.ones((num_of_samples,),dtype='int64')

   y[0:100]=0
   y[100:200]=1
   y[200:300]=2
   y[300:]=3

   names = ['cats','dogs','horses','humans']

   metadata_file = open(os.path.join(LOG_DIR, 'metadata_4_classes.tsv'), 'w')
   metadata_file.write('Class\tName\n')
   k=100 # number of samples in each class
   j=0

   for i in range(num_of_samples):
       c = names[y[i]]
       if i%k==0:
           j=j+1
       metadata_file.write('{}\t{}\n'.format(j,c))
       #metadata_file.write('%06d\t%s\n' % (j, c))
   metadata_file.close()

Load the image data that you want to visualize along with the label names on tensorboard

The shape of image data array should be (num_samples,rows,cols,channel) . In this example it is (400,224,224,3)

   img_data=[]
   for dataset in data_dir_list:
       img_list=os.listdir(data_path+'/'+ dataset)
       print ('Loaded the images of dataset-'+'{}\n'.format(dataset))
       for img in img_list:
           input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
           input_img_resize=cv2.resize(input_img,(128,128)) # you can choose what size to resize your data
           img_data.append(input_img_resize)
   img_data = np.array(img_data)

Define the function to generate Sprite images. Sprite image is needed if you want to visualize the images along with the label names for corresponding feature vectors.

   def images_to_sprite(data):
        """Creates the sprite image along with any necessary padding

        Args:
          data: NxHxW[x3] tensor containing the images.

        Returns:
          data: Properly shaped HxWx3 image with any necessary padding.
        """
        if len(data.shape) == 3:
            data = np.tile(data[...,np.newaxis], (1,1,1,3))
        data = data.astype(np.float32)
        min = np.min(data.reshape((data.shape[0], -1)), axis=1)
        data = (data.transpose(1,2,3,0) - min).transpose(3,0,1,2)
        max = np.max(data.reshape((data.shape[0], -1)), axis=1)
        data = (data.transpose(1,2,3,0) / max).transpose(3,0,1,2)
        # Inverting the colors seems to look better for MNIST
        #data = 1 - data

        n = int(np.ceil(np.sqrt(data.shape[0])))
        padding = ((0, n ** 2 - data.shape[0]), (0, 0),
                (0, 0)) + ((0, 0),) * (data.ndim - 3)
        data = np.pad(data, padding, mode='constant',
                constant_values=0)
        # Tile the individual thumbnails into an image.
        data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3)
                + tuple(range(4, data.ndim + 1)))
        data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
        data = (data * 255).astype(np.uint8)
        return data

Generate the sprite image for your dataset

sprite = images_to_sprite(img_data)
cv2.imwrite(os.path.join(LOG_DIR, 'sprite_4_classes.png'), sprite)

For this example it looks like :

Alt text

Run a tensorflow session and write the log files in log directory

with tf.Session() as sess:
    saver = tf.train.Saver([features])

    sess.run(features.initializer)
    saver.save(sess, os.path.join(LOG_DIR, 'images_4_classes.ckpt'))

    config = projector.ProjectorConfig()
    # One can add multiple embeddings.
    embedding = config.embeddings.add()
    embedding.tensor_name = features.name
    # Link this tensor to its metadata file (e.g. labels).
    embedding.metadata_path = os.path.join(LOG_DIR, 'metadata_4_classes.tsv')
    # Comment out if you don't want sprites
    embedding.sprite.image_path = os.path.join(LOG_DIR, 'sprite_4_classes.png')
    embedding.sprite.single_image_dim.extend([img_data.shape[1], img_data.shape[1]])
    # Saves a config file that TensorBoard will read during startup.
    projector.visualize_embeddings(tf.summary.FileWriter(LOG_DIR), config)

The entire code is in own-data-embedding-visualization.py