-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathupdated_custom_data_cnn.py
412 lines (326 loc) · 12.2 KB
/
updated_custom_data_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""
Created on Thu May 4 23:32:34 2017
@author: anuj shah
"""
# Import libraries
import os,cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split
#from sklearn.model_selection import train_test_split
from keras import backend as K
#K.set_image_dim_ordering('th')
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD,RMSprop,adam
#%%
PATH = os.getcwd()
# Define data path
data_path = PATH + '/data'
data_dir_list = os.listdir(data_path)
img_rows=128
img_cols=128
num_channel=1
num_epoch=20
# Define the number of classes
num_classes = 4
labels_name={'cats':0,'dogs':1,'horses':2,'humans':3}
img_data_list=[]
labels_list = []
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}\n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)
img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)
labels = np.array(labels_list)
# print the count of number of samples for different classes
print(np.unique(labels,return_counts=True))
# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)
#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)
if num_channel==1:
if K.image_dim_ordering()=='th':
img_data= np.expand_dims(img_data, axis=1)
print (img_data.shape)
else:
img_data= np.expand_dims(img_data, axis=4)
print (img_data.shape)
else:
if K.image_dim_ordering()=='th':
img_data=np.rollaxis(img_data,3,1)
print (img_data.shape)
#%%
USE_SKLEARN_PREPROCESSING=False
if USE_SKLEARN_PREPROCESSING:
# using sklearn for preprocessing
from sklearn import preprocessing
def image_to_feature_vector(image, size=(128, 128)):
# resize the image to a fixed size, then flatten the image into
# a list of raw pixel intensities
return cv2.resize(image, size).flatten()
img_data_list=[]
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'{}\n'.format(dataset))
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_flatten=image_to_feature_vector(input_img,(128,128))
img_data_list.append(input_img_flatten)
img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
print (img_data.shape)
img_data_scaled = preprocessing.scale(img_data)
print (img_data_scaled.shape)
print (np.mean(img_data_scaled))
print (np.std(img_data_scaled))
print (img_data_scaled.mean(axis=0))
print (img_data_scaled.std(axis=0))
if K.image_dim_ordering()=='th':
img_data_scaled=img_data_scaled.reshape(img_data.shape[0],num_channel,img_rows,img_cols)
print (img_data_scaled.shape)
else:
img_data_scaled=img_data_scaled.reshape(img_data.shape[0],img_rows,img_cols,num_channel)
print (img_data_scaled.shape)
if K.image_dim_ordering()=='th':
img_data_scaled=img_data_scaled.reshape(img_data.shape[0],num_channel,img_rows,img_cols)
print (img_data_scaled.shape)
else:
img_data_scaled=img_data_scaled.reshape(img_data.shape[0],img_rows,img_cols,num_channel)
print (img_data_scaled.shape)
if USE_SKLEARN_PREPROCESSING:
img_data=img_data_scaled
#%%
# Defining the model
input_shape=img_data[0].shape
model = Sequential()
model.add(Convolution2D(32, 3,3,border_mode='same',input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
#model.add(Convolution2D(64, 3, 3))
#model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
#sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
#model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop',metrics=["accuracy"])
# Viewing model_configuration
model.summary()
model.get_config()
model.layers[0].get_config()
model.layers[0].input_shape
model.layers[0].output_shape
model.layers[0].get_weights()
np.shape(model.layers[0].get_weights()[0])
model.layers[0].trainable
#%%
# Training
hist = model.fit(X_train, y_train, batch_size=16, nb_epoch=num_epoch, verbose=1, validation_data=(X_test, y_test))
#hist = model.fit(X_train, y_train, batch_size=32, nb_epoch=20,verbose=1, validation_split=0.2)
# Training with callbacks
from keras import callbacks
filename='model_train_new.csv'
csv_log=callbacks.CSVLogger(filename, separator=',', append=False)
early_stopping=callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='min')
filepath="Best-weights-my_model-{epoch:03d}-{loss:.4f}-{acc:.4f}.hdf5"
checkpoint = callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [csv_log,early_stopping,checkpoint]
hist = model.fit(X_train, y_train, batch_size=16, nb_epoch=num_epoch, verbose=1, validation_data=(X_test, y_test),callbacks=callbacks_list)
# visualizing losses and accuracy
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(num_epoch)
plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
#%%
# Evaluating the model
score = model.evaluate(X_test, y_test, show_accuracy=True, verbose=0)
print('Test Loss:', score[0])
print('Test accuracy:', score[1])
test_image = X_test[0:1]
print (test_image.shape)
print(model.predict(test_image))
print(model.predict_classes(test_image))
print(y_test[0:1])
# Testing a new image
test_image = cv2.imread('data/Humans/rider-8.jpg')
test_image=cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY)
test_image=cv2.resize(test_image,(128,128))
test_image = np.array(test_image)
test_image = test_image.astype('float32')
test_image /= 255
print (test_image.shape)
if num_channel==1:
if K.image_dim_ordering()=='th':
test_image= np.expand_dims(test_image, axis=0)
test_image= np.expand_dims(test_image, axis=0)
print (test_image.shape)
else:
test_image= np.expand_dims(test_image, axis=3)
test_image= np.expand_dims(test_image, axis=0)
print (test_image.shape)
else:
if K.image_dim_ordering()=='th':
test_image=np.rollaxis(test_image,2,0)
test_image= np.expand_dims(test_image, axis=0)
print (test_image.shape)
else:
test_image= np.expand_dims(test_image, axis=0)
print (test_image.shape)
# Predicting the test image
print((model.predict(test_image)))
print(model.predict_classes(test_image))
#%%
# Visualizing the intermediate layer
#
def get_featuremaps(model, layer_idx, X_batch):
get_activations = K.function([model.layers[0].input, K.learning_phase()],[model.layers[layer_idx].output,])
activations = get_activations([X_batch,0])
return activations
layer_num=3
filter_num=0
activations = get_featuremaps(model, int(layer_num),test_image)
print (np.shape(activations))
feature_maps = activations[0][0]
print (np.shape(feature_maps))
if K.image_dim_ordering()=='th':
feature_maps=np.rollaxis((np.rollaxis(feature_maps,2,0)),2,0)
print (feature_maps.shape)
fig=plt.figure(figsize=(16,16))
plt.imshow(feature_maps[:,:,filter_num],cmap='gray')
plt.savefig("featuremaps-layer-{}".format(layer_num) + "-filternum-{}".format(filter_num)+'.jpg')
num_of_featuremaps=feature_maps.shape[2]
fig=plt.figure(figsize=(16,16))
plt.title("featuremaps-layer-{}".format(layer_num))
subplot_num=int(np.ceil(np.sqrt(num_of_featuremaps)))
for i in range(int(num_of_featuremaps)):
ax = fig.add_subplot(subplot_num, subplot_num, i+1)
#ax.imshow(output_image[0,:,:,i],interpolation='nearest' ) #to see the first filter
ax.imshow(feature_maps[:,:,i],cmap='gray')
plt.xticks([])
plt.yticks([])
plt.tight_layout()
plt.show()
fig.savefig("featuremaps-layer-{}".format(layer_num) + '.jpg')
#%%
# Printing the confusion matrix
from sklearn.metrics import classification_report,confusion_matrix
import itertools
Y_pred = model.predict(X_test)
print(Y_pred)
y_pred = np.argmax(Y_pred, axis=1)
print(y_pred)
#y_pred = model.predict_classes(X_test)
#print(y_pred)
target_names = ['class 0(cats)', 'class 1(Dogs)', 'class 2(Horses)','class 3(Humans)']
print(classification_report(np.argmax(y_test,axis=1), y_pred,target_names=target_names))
print(confusion_matrix(np.argmax(y_test,axis=1), y_pred))
# Plotting the confusion matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = (confusion_matrix(np.argmax(y_test,axis=1), y_pred))
np.set_printoptions(precision=2)
plt.figure()
# Plot non-normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=target_names,
title='Confusion matrix')
#plt.figure()
# Plot normalized confusion matrix
#plot_confusion_matrix(cnf_matrix, classes=target_names, normalize=True,
# title='Normalized confusion matrix')
#plt.figure()
plt.show()
#%%
# Saving and loading model and weights
from keras.models import model_from_json
from keras.models import load_model
# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
# load json and create model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
print("Loaded model from disk")
model.save('model.hdf5')
loaded_model=load_model('model.hdf5')