Skip to content

Latest commit

 

History

History
 
 

python

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benchmarking script for large language models

This script provides a unified approach to estimate performance for Large Language Models. It is based on pipelines provided by Optimum-Intel and allows to estimate performance for pytorch and openvino models, using almost the same code and precollected models.

Usage

1. Start a Python virtual environment

python3 -m venv python-env
source python-env/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Note: If you are using an existing python environment, recommend following command to use all the dependencies with latest versions:
pip install -U --upgrade-strategy eager -r requirements.txt

2. Convert a model to OpenVINO IR

The conversion script for preparing benchmarking models, convert.py allows to reproduce IRs stored on shared drive.

Prerequisites: install conversion dependencies using requirements.txt

Usage:

python convert.py --model_id <model_id_or_path> --output_dir <out_dir>

Paramters:

  • --model_id - model_id for downloading from huggngface_hub (https://huggingface.co/models) or path with directory where pytorch model located.
  • --output_dir - output directory for saving OpenVINO model
  • --precision - (optional, default FP32), precision for model conversion FP32 or FP16
  • --save_orig - flag for saving original pytorch model, model will be located in <output_dir>/pytorch subdirectory.
  • --compress_weights - The weight compression option, INT8 - INT8 weights, 4BIT_DEFAULT - for 4-bit weights compression with predefined configuration, INT4_SYM - for INT4 compressed weights with symmetric quantization, INT4_ASYM - for INT4 compressed weights with assymetric quantization. You can specify multiple backends separated by a space.
  • --compress_weights_backends - (optional, default openvino) backends for weights compression, this option has an effect only with --compress_weights. You can specify multiple backends separated by a space.
  • --ratio - Compression ratio between primary and backup precision, e.g. INT4/INT8.
  • --group_size - Size of the group of weights that share the same quantization parameters

Usage example:

python convert.py --model_id meta-llama/Llama-2-7b-chat-hf --output_dir models/llama-2-7b-chat

the result of running the command will have the following file structure:

|-llama-2-7b-chat
  |-pytorch
    |-dldt
       |-FP32
          |-openvino_model.xml
          |-openvino_model.bin
          |-config.json
          |-added_tokens.json
          |-tokenizer_config.json
          |-tokenizer.json
          |-tokenizer.model
          |-special_tokens_map.json

3. Benchmarking

Prerequisites: install benchmarking dependencies using requirements.txt

pip install -r requirements.txt

note: You can specify the installed OpenVINO version through pip install

# e.g. 
pip install openvino==2023.3.0

4. Run the following command to test the performance of one LLM model

python benchmark.py -m <model> -d <device> -r <report_csv> -f <framework> -p <prompt text> -n <num_iters>
# e.g.
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -n 2
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -p "What is openvino?" -n 2
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -pf prompts/llama-2-7b-chat_l.jsonl -n 2

Parameters:

  • -m - model path
  • -d - inference device (default=cpu)
  • -r - report csv
  • -f - framework (default=ov)
  • -p - interactive prompt text
  • -pf - path of JSONL file including interactive prompts
  • -n - number of benchmarking iterations, if the value greater 0, will exclude the first iteration. (default=0)
  • -ic - limit the output token size (default 512) of text_gen and code_gen models.
python ./benchmark.py -h # for more information

Running torch.compile()

The option --torch_compile_backend uses torch.compile() to speed up the PyTorch code by compiling it into optimized kernels using a selected backend.

Prerequisites: install benchmarking dependencies using requirements.txt

pip install -r requirements.txt

In order to run the torch.compile() on CUDA GPU, install additionally the nightly PyTorch version:

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118

Add the option --torch_compile_backend with the desired backend: pytorch or openvino (default) while running the benchmarking script:

python ./benchmark.py -m models/llama-2-7b-chat/pytorch -d CPU --torch_compile_backend openvino

Additional Resources

1. NOTE

If you encounter any errors, please check NOTES.md which provides solutions to the known errors.

2. Image generation

To configure more parameters for image generation models, reference to IMAGE_GEN.md