diff --git a/docs/content.zh/docs/connectors/datastream/formats/parquet.md b/docs/content.zh/docs/connectors/datastream/formats/parquet.md index 860a53131deb77..5ac5a287479bce 100644 --- a/docs/content.zh/docs/connectors/datastream/formats/parquet.md +++ b/docs/content.zh/docs/connectors/datastream/formats/parquet.md @@ -198,14 +198,14 @@ ds = env.from_source(source, WatermarkStrategy.no_watermarks(), "file-source") Flink 支持三种方式来读取 Parquet 文件并创建 Avro records (PyFlink 只支持 Generic record): -- [Generic record](https://avro.apache.org/docs/1.10.0/api/java/index.html) -- [Specific record](https://avro.apache.org/docs/1.10.0/api/java/index.html) -- [Reflect record](https://avro.apache.org/docs/1.10.0/api/java/org/apache/avro/reflect/package-summary.html) +- [Generic record](https://avro.apache.org/docs/++version++/api/java/index.html) +- [Specific record](https://avro.apache.org/docs/++version++/api/java/index.html) +- [Reflect record](https://avro.apache.org/docs/++version++/api/java/org/apache/avro/reflect/package-summary.html) ### Generic record -使用 JSON 定义 Avro schemas。你可以从 [Avro specification](https://avro.apache.org/docs/1.10.0/spec.html) 获取更多关于 Avro schemas 和类型的信息。 -此示例使用了一个在 [official Avro tutorial](https://avro.apache.org/docs/1.10.0/gettingstartedjava.html) 中描述的示例相似的 Avro schema: +使用 JSON 定义 Avro schemas。你可以从 [Avro specification](https://avro.apache.org/docs/++version++/spec.html) 获取更多关于 Avro schemas 和类型的信息。 +此示例使用了一个在 [official Avro tutorial](https://avro.apache.org/docs/++version++/gettingstartedjava.html) 中描述的示例相似的 Avro schema: ```json lines {"namespace": "example.avro", @@ -219,11 +219,11 @@ Flink 支持三种方式来读取 Parquet 文件并创建 Avro records (PyFlin } ``` 这个 schema 定义了一个具有三个属性的的 user 记录:name,favoriteNumber 和 favoriteColor。你可以 -在 [record specification](https://avro.apache.org/docs/1.10.0/spec.html#schema_record) 找到更多关于如何定义 Avro schema 的详细信息。 +在 [record specification](https://avro.apache.org/docs/++version++/spec.html#schema_record) 找到更多关于如何定义 Avro schema 的详细信息。 在此示例中,你将创建包含由 Avro Generic records 格式构成的 Parquet records 的 DataStream。 Flink 会基于 JSON 字符串解析 Avro schema。也有很多其他的方式解析 schema,例如基于 java.io.File 或 java.io.InputStream。 -请参考 [Avro Schema](https://avro.apache.org/docs/1.10.0/api/java/org/apache/avro/Schema.html) 以获取更多详细信息。 +请参考 [Avro Schema](https://avro.apache.org/docs/++version++/api/java/org/apache/avro/Schema.html) 以获取更多详细信息。 然后,你可以通过 `AvroParquetReaders` 为 Avro Generic 记录创建 `AvroParquetRecordFormat`。 {{< tabs "GenericRecord" >}} @@ -286,7 +286,7 @@ stream = env.from_source(source, WatermarkStrategy.no_watermarks(), "file-source 基于之前定义的 schema,你可以通过利用 Avro 代码生成来生成类。 一旦生成了类,就不需要在程序中直接使用 schema。 你可以使用 `avro-tools.jar` 手动生成代码,也可以直接使用 Avro Maven 插件对配置的源目录中的任何 .avsc 文件执行代码生成。 -请参考 [Avro Getting Started](https://avro.apache.org/docs/1.10.0/gettingstartedjava.html) 获取更多信息。 +请参考 [Avro Getting Started](https://avro.apache.org/docs/++version++/gettingstartedjava.html) 获取更多信息。 此示例使用了样例 schema {{< gh_link file="flink-formats/flink-parquet/src/test/resources/avro/testdata.avsc" name="testdata.avsc" >}}: @@ -335,7 +335,7 @@ final DataStream stream = 除了需要预定义 Avro Generic 和 Specific 记录, Flink 还支持基于现有 Java POJO 类从 Parquet 文件创建 DateStream。 在这种场景中,Avro 会使用 Java 反射为这些 POJO 类生成 schema 和协议。 -请参考 [Avro reflect](https://avro.apache.org/docs/1.10.0/api/java/index.html) 文档获取更多关于 Java 类型到 Avro schemas 映射的详细信息。 +请参考 [Avro reflect](https://avro.apache.org/docs/++version++/api/java/index.html) 文档获取更多关于 Java 类型到 Avro schemas 映射的详细信息。 本例使用了一个简单的 Java POJO 类 {{< gh_link file="flink-formats/flink-parquet/src/test/java/org/apache/flink/formats/parquet/avro/Datum.java" name="Datum" >}}: diff --git a/docs/content/docs/connectors/datastream/formats/parquet.md b/docs/content/docs/connectors/datastream/formats/parquet.md index 706ad0a53d26dc..bddf58378c1ffd 100644 --- a/docs/content/docs/connectors/datastream/formats/parquet.md +++ b/docs/content/docs/connectors/datastream/formats/parquet.md @@ -196,14 +196,14 @@ ds = env.from_source(source, WatermarkStrategy.no_watermarks(), "file-source") Flink supports producing three types of Avro records by reading Parquet files (Only Generic record is supported in PyFlink): -- [Generic record](https://avro.apache.org/docs/1.10.0/api/java/index.html) -- [Specific record](https://avro.apache.org/docs/1.10.0/api/java/index.html) -- [Reflect record](https://avro.apache.org/docs/1.10.0/api/java/org/apache/avro/reflect/package-summary.html) +- [Generic record](https://avro.apache.org/docs/++version++/api/java/index.html) +- [Specific record](https://avro.apache.org/docs/++version++/api/java/index.html) +- [Reflect record](https://avro.apache.org/docs/++version++/api/java/org/apache/avro/reflect/package-summary.html) ### Generic record -Avro schemas are defined using JSON. You can get more information about Avro schemas and types from the [Avro specification](https://avro.apache.org/docs/1.10.0/spec.html). -This example uses an Avro schema example similar to the one described in the [official Avro tutorial](https://avro.apache.org/docs/1.10.0/gettingstartedjava.html): +Avro schemas are defined using JSON. You can get more information about Avro schemas and types from the [Avro specification](https://avro.apache.org/docs/++version++/spec.html). +This example uses an Avro schema example similar to the one described in the [official Avro tutorial](https://avro.apache.org/docs/++version++/gettingstartedjava.html): ```json lines {"namespace": "example.avro", @@ -217,10 +217,10 @@ This example uses an Avro schema example similar to the one described in the [of } ``` -This schema defines a record representing a user with three fields: name, favoriteNumber, and favoriteColor. You can find more details at [record specification](https://avro.apache.org/docs/1.10.0/spec.html#schema_record) for how to define an Avro schema. +This schema defines a record representing a user with three fields: name, favoriteNumber, and favoriteColor. You can find more details at [record specification](https://avro.apache.org/docs/++version++/spec.html#schema_record) for how to define an Avro schema. In the following example, you will create a DataStream containing Parquet records as Avro Generic records. -It will parse the Avro schema based on the JSON string. There are many other ways to parse a schema, e.g. from java.io.File or java.io.InputStream. Please refer to [Avro Schema](https://avro.apache.org/docs/1.10.0/api/java/org/apache/avro/Schema.html) for details. +It will parse the Avro schema based on the JSON string. There are many other ways to parse a schema, e.g. from java.io.File or java.io.InputStream. Please refer to [Avro Schema](https://avro.apache.org/docs/++version++/api/java/org/apache/avro/Schema.html) for details. After that, you will create an `AvroParquetRecordFormat` via `AvroParquetReaders` for Avro Generic records. {{< tabs "GenericRecord" >}} @@ -284,7 +284,7 @@ Based on the previously defined schema, you can generate classes by leveraging A Once the classes have been generated, there is no need to use the schema directly in your programs. You can either use `avro-tools.jar` to generate code manually or you could use the Avro Maven plugin to perform code generation on any .avsc files present in the configured source directory. Please refer to -[Avro Getting Started](https://avro.apache.org/docs/1.10.0/gettingstartedjava.html) for more information. +[Avro Getting Started](https://avro.apache.org/docs/++version++/gettingstartedjava.html) for more information. The following example uses the example schema {{< gh_link file="flink-formats/flink-parquet/src/test/resources/avro/testdata.avsc" name="testdata.avsc" >}}: @@ -334,7 +334,7 @@ final DataStream stream = Beyond Avro Generic and Specific record that requires a predefined Avro schema, Flink also supports creating a DataStream from Parquet files based on existing Java POJO classes. In this case, Avro will use Java reflection to generate schemas and protocols for these POJO classes. -Java types are mapped to Avro schemas, please refer to the [Avro reflect](https://avro.apache.org/docs/1.10.0/api/java/index.html) documentation for more details. +Java types are mapped to Avro schemas, please refer to the [Avro reflect](https://avro.apache.org/docs/++version++/api/java/index.html) documentation for more details. This example uses a simple Java POJO class {{< gh_link file="flink-formats/flink-parquet/src/test/java/org/apache/flink/formats/parquet/avro/Datum.java" name="Datum" >}}: