-
I am trying to profile the time of net = nn.Sequential()
net.add(nn.MaxPool2D(pool_size=3, strides=2, padding=2))
net.add(nn.Flatten())
net.add(nn.Dense(10)) The Profile Statistics:
There is no # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: skip-file
from __future__ import print_function
import argparse
import logging
logging.basicConfig(level=logging.DEBUG)
import numpy as np
import mxnet as mx
from mxnet import gluon, autograd, profiler
from mxnet.gluon import nn
# Parse CLI arguments
parser = argparse.ArgumentParser(description='MXNet Gluon MNIST Example')
parser.add_argument('--batch-size', type=int, default=100,
help='batch size for training and testing (default: 100)')
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--cuda', action='store_true', default=False,
help='Train on GPU with CUDA')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
opt = parser.parse_args()
# define network
net = nn.Sequential()
net.add(nn.MaxPool2D(pool_size=3, strides=2, padding=2))
net.add(nn.Flatten())
net.add(nn.Dense(10))
# net.add(nn.Dense(128, activation='relu'))
# net.add(nn.Dense(64, activation='relu'))
# net.add(nn.Dense(10))
# data
def transformer(data, label):
data = data.astype(np.float32)/255
# data = data.reshape((-1,)).astype(np.float32)/255
return data, label
train_data = gluon.data.DataLoader(
gluon.data.vision.MNIST('./data', train=True).transform(transformer),
batch_size=opt.batch_size, shuffle=True, last_batch='discard')
val_data = gluon.data.DataLoader(
gluon.data.vision.MNIST('./data', train=False).transform(transformer),
batch_size=opt.batch_size, shuffle=False)
# train
def test(ctx):
metric = mx.gluon.metric.Accuracy()
for data, label in val_data:
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
output = net(data)
metric.update([label], [output])
return metric.get()
def train(epochs, ctx):
# Collect all parameters from net and its children, then initialize them.
net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)
# Trainer is for updating parameters with gradient.
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': opt.lr, 'momentum': opt.momentum})
metric = mx.gluon.metric.Accuracy()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
for epoch in range(epochs):
# reset data iterator and metric at begining of epoch.
metric.reset()
for i, (data, label) in enumerate(train_data):
# Copy data to ctx if necessary
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
# Start recording computation graph with record() section.
# Recorded graphs can then be differentiated with backward.
with autograd.record():
output = net(data)
L = loss(output, label)
L.backward()
# take a gradient step with batch_size equal to data.shape[0]
trainer.step(data.shape[0])
# update metric at last.
metric.update([label], [output])
if i % opt.log_interval == 0 and i > 0:
name, acc = metric.get()
print('[Epoch %d Batch %d] Training: %s=%f'%(epoch, i, name, acc))
name, acc = metric.get()
print('[Epoch %d] Training: %s=%f'%(epoch, name, acc))
name, val_acc = test(ctx)
print('[Epoch %d] Validation: %s=%f'%(epoch, name, val_acc))
net.save_parameters('mnist.params')
if __name__ == '__main__':
profiler.set_config(profile_all=False,
profile_symbolic=False,
profile_imperative=True,
profile_memory=False,
profile_api=False,
aggregate_stats=True,
continuous_dump=True,
filename='profile_output.json')
profiler.set_state('run')
if opt.cuda:
ctx = mx.gpu(0)
else:
ctx = mx.cpu()
train(opt.epochs, ctx)
mx.nd.waitall()
profiler.set_state('stop')
# profiler.dump(finished=False)
print(profiler.dumps(reset=True)) |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment
-
I just realized that the pooling layer does not need to update parameter. So, if the pooling layer is the first layer, there is no need to do backward. |
Beta Was this translation helpful? Give feedback.
I just realized that the pooling layer does not need to update parameter. So, if the pooling layer is the first layer, there is no need to do backward.