原文: http://numba.pydata.org/numba-doc/latest/user/jitclass.html
注意
这是 jitclass 支持的早期版本。并非所有编译功能都已公开或实现。
Numba 通过 numba.jitclass()
装饰器支持类的代码生成。可以使用此装饰器标记类以进行优化,同时指定每个字段的类型。我们将生成的类对象称为 jitclass。 jitclass 的所有方法都被编译成 nopython 函数。 jitclass 实例的数据在堆上作为 C 兼容结构分配,以便任何已编译的函数可以绕过解释器直接访问底层数据。
这是一个 jitclass 的例子:
import numpy as np
from numba import jitclass # import the decorator
from numba import int32, float32 # import the types
spec = [
('value', int32), # a simple scalar field
('array', float32[:]), # an array field
]
@jitclass(spec)
class Bag(object):
def __init__(self, value):
self.value = value
self.array = np.zeros(value, dtype=np.float32)
@property
def size(self):
return self.array.size
def increment(self, val):
for i in range(self.size):
self.array[i] = val
return self.array
(参见源代码树中 <cite>examples / jitclass.py</cite> 的完整示例)
在上面的例子中,spec
被提供为 2 元组的列表。元组包含字段的名称和字段的 numba 类型。或者,用户可以使用字典(OrderedDict
优选地用于稳定字段排序),其将字段名称映射到类型。
该类的定义至少需要一个__init__
方法来初始化每个定义的字段。未初始化的字段包含垃圾数据。可以定义方法和属性(仅限 getter 和 setter)。它们将自动编译。
jitclasses 的以下操作在解释器和 numba 编译函数中都有效:
- 调用 jitclass 类对象来构造一个新实例(例如
mybag = Bag(123)
); - 对属性和属性的读/写访问(例如
mybag.value
); - 调用方法(例如
mybag.increment(3)
);
在 numba 编译函数中使用 jitclasses 更有效。可以内联简短方法(由 LLVM inliner 决定)。属性访问只是从 C 结构中读取。使用来自 intpreter 的 jitclasses 具有从解释器调用任何 numba 编译函数的相同开销。参数和返回值必须在 python 对象和本机表示之间取消装箱或装箱。当 jitclass 实例传递给解释器时,由 jitclass 封装的值不会被装入 python 对象。在对字段值的属性访问期间,它们被装箱。
- jitclass 类对象被视为 numba 编译函数内的函数(构造函数)。
isinstance()
仅适用于口译员。- 尚未优化在解释器中操作 jitclass 实例。
- 仅在 CPU 上提供对 jitclasses 的支持。 (注意:计划在将来的版本中支持 GPU 设备。)
numba.jitclass(spec)
用于创建 jitclass 的装饰器。
参数:
-
spec:
指定此类中每个字段的类型。必须是字典或序列。使用字典,使用 collections.OrderedDict 进行稳定排序。对于序列,它必须包含 2 元组(fieldname,fieldtype)。
返回:
一个可调用的,它接受一个将被编译的类对象。