forked from blaa/PyGene
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_converge.py
executable file
·71 lines (50 loc) · 1.49 KB
/
demo_converge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#! /usr/bin/env python
"""
Very simple demo in which organisms try to minimise
the output value of a function
"""
from pygene.gene import FloatGene, FloatGeneMax
from pygene.organism import Organism, MendelOrganism
from pygene.population import Population
class CvGene(FloatGeneMax):
"""
Gene which represents the numbers used in our organism
"""
# genes get randomly generated within this range
randMin = -100.0
randMax = 100.0
# probability of mutation
mutProb = 0.1
# degree of mutation
mutAmt = 0.1
class Converger(MendelOrganism):
"""
Implements the organism which tries
to converge a function
"""
genome = {'x':CvGene, 'y':CvGene}
def fitness(self):
"""
Implements the 'fitness function' for this species.
Organisms try to evolve to minimise this function's value
"""
return self['x'] ** 2 + self['y'] ** 2
def __repr__(self):
return "<Converger fitness=%f x=%s y=%s>" % (
self.fitness(), self['x'], self['y'])
# create an empty population
pop = Population(species=Converger, init=2, childCount=50, childCull=20)
# now a func to run the population
def main():
try:
while True:
# execute a generation
pop.gen()
# get the fittest member
best = pop.best()
# and dump it out
print(best)
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()