-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrapid.py
388 lines (315 loc) · 15 KB
/
rapid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Code for
# Efficient training of energy-based models via spin-glass control
# arXiv:1910.01592
#
# Authors: Alejandro Pozas-Kerstjens and Gorka Muñoz-Gil
#
# Requires: ebm-torch for ML models (https://www.github.com/apozas/ebm-torch)
# math for mathematical operations
# pytorch as ML framework
# tqdm for progress bar
# Last modified: Oct, 2019
import math
from ebm.models import RBM
from ebm.optimizers import SGD, Adam, outer_product
from ebm.samplers import ContrastiveDivergence as cd
from torch import cat, einsum, max, mm, randint, rand_like, sigmoid, sign, \
sqrt, tanh, zeros_like
from torch.nn.functional import linear, dropout
from torch.nn import Parameter
from tqdm import tqdm
# -----------------------------------------------------------------------------
# Models
# -----------------------------------------------------------------------------
class RBM_pm(RBM):
def __init__(self, n_visible=10, n_hidden=50, sampler=None, optimizer=None,
device=None, weights=None):
'''Restricted Boltzmann machine with spin-like neurons (their allowed
values are +1/-1) instead of binary (0/1) neurons, and with no
biases.
Arguments:
:param n_visible: The number nodes in the visible layer
:type n_visible: int
:param n_hidden: The number nodes in the hidden layer
:type n_hidden: int
:param sampler: Method used to draw samples from the model
:type sampler: :class:`ebm.samplers`
:param optimizer: Optimizer used for parameter updates
:type optimizer: :class:`ebm.optimizers`
:param device: Device where to perform computations. None is CPU.
:type device: torch.device
:param W: Optional parameter to specify the weights of the RBM
:type W: torch.nn.Parameter
:param vbias: Optional parameter to specify the visible biases of
the RBM
:type vbias: torch.nn.Parameter
:param hbias: Optional parameter to specify the hidden biases of
the RBM
:type hbias: torch.nn.Parameter
'''
super().__init__(n_visible, n_hidden, sampler, optimizer, device, weights)
def free_energy(self, v):
'''Computes the free energy for a given state of the visible layer.
Arguments:
:param v: The state of the visible layer of the RBM
:type v: torch.Tensor
:returns: torch.Tensor
'''
wx_b = linear(v, self.weights, self.hbias)
# Fancy (and overflow-resistant) way of computing log(2cosh(x))
a = max(wx_b, -wx_b)
hidden_term = (a + ((-wx_b - a).exp() + (wx_b - a).exp()).log()).sum(1)
return -hidden_term
def train(self, input_data):
'''Trains the RBM.
Arguments:
:param input_data: Batch of training points
:type input_data: torch.utils.data.DataLoader
'''
for batch in tqdm(input_data, desc=('Epoch ' +
str(self.optimizer.epoch + 1))):
sample_data = batch.float()
vpos = sample_data
vneg = self.sampler.get_negative_sample(vpos, self.weights,
self.vbias, self.hbias)
W_update, _, _ = \
self.optimizer.get_updates(vpos, vneg,
self.weights, self.vbias, self.hbias)
self.weights += W_update
self.optimizer.epoch += 1
class RA_RBM(RBM_pm):
def __init__(self, n_visible=100, n_hidden=50, K=50,
optimizer=None, device=None, xi=None):
'''RBM where the weights are computed through the method of Restricted
Axon. The weights are computed from low-energy patterns, and the
parameters to be optimized is the patterns themselves
Arguments:
:param n_visible: The number nodes in the visible layer
:type n_visible: int
:param n_hidden: The number nodes in the hidden layer
:type n_hidden: int
:param K: The number of patterns from which the weights are computed
:type K: int
:param sampler: Method used to draw samples from the model
:type sampler: :class:`samplers`
:param optimizer: Optimizer used for parameter updates
:type optimizer: :class:`optimizers`
:param device: Device where to perform computations. None is CPU.
:type device: torch.device
:param xi: Optional parameter to specify the initial patterns
:type xi: torch.nn.Parameter
:param vbias: Optional parameter to specify the visible biases of
the RBM
:type vbias: torch.nn.Parameter
:param hbias: Optional parameter to specify the hidden biases of
the RBM
:type hbias: torch.nn.Parameter'''
super().__init__(n_visible, n_hidden, 'None', optimizer, device)
self.K = K
self.n_visible = n_visible
self.n_hidden = n_hidden
if xi is not None:
self.xi = xi
else:
self.xi = Parameter((2 * randint(0,
2,
(self.K, self.n_hidden + self.n_visible)
) - 1).float().to(self.device))
for param in self.parameters():
param.requires_grad = False
self.get_params()
def get_params(self):
'''Computes the weight matrix of the RBM from the patterns'''
vis = self.xi[:, :self.n_visible]
hidd = self.xi[:, self.n_visible:]
self.weights.data = (outer_product(hidd, vis).sum(0)).to(self.device)
self.weights.data /= math.sqrt(self.K)
def train(self, input_data):
'''Trains the RBM.
Arguments:
:param input_data: Batch of training points
:type input_data: torch.utils.data.DataLoader
'''
for batch in tqdm(input_data, desc=('Epoch ' +
str(self.optimizer.epoch + 1))):
sample_data = batch.float()
vpos = sample_data
# Get negative phase from the patterns
vneg = sign(self.xi[:, :vpos.shape[1]])
xi_update = self.optimizer.get_updates(vpos, vneg, self.xi)
self.xi += xi_update
self.get_params()
# Renormalize after the training epoch has concluded
self.xi.data = sign(self.xi)
self.get_params()
self.optimizer.epoch += 1
# -----------------------------------------------------------------------------
# Samplers
# -----------------------------------------------------------------------------
class ContrastiveDivergence_pm(cd):
def __init__(self, k, dropout=0):
'''Obtains samples of RBM models via Gibbs iteration of predetermined
initial visible configurations, using spin notation (+1,-1).
Arguments:
:param k: The number of iterations in CD-k
:type k: int
:param dropout: Optional parameter, fraction of neurons in the
previous layer that are not taken into account when
getting a sample.
:type dropout: float
'''
super().__init__(k, dropout, continuous_output=False)
def get_h_from_v(self, v, W, hbias):
h_probs = self._propup(v, W, hbias)
h_sample = 2 * h_probs.bernoulli() - 1
return h_sample
def get_v_from_h(self, h, W, vbias):
v_probs = self._propdown(h, W, vbias)
v_sample = 2 * v_probs.bernoulli() - 1
return v_sample
def _propdown(self, h, W, vbias):
pre_sigmoid_activation = linear(dropout(h, self.dropout), W.t(), vbias)
return sigmoid(2 * pre_sigmoid_activation)
def _propup(self, v, W, hbias):
pre_sigmoid_activation = linear(dropout(v, self.dropout), W, hbias)
return sigmoid(2 * pre_sigmoid_activation)
class PersistentContrastiveDivergence_pm(ContrastiveDivergence_pm):
def __init__(self, k, n_chains=0, dropout=0):
'''Obtains samples of RBM models via Gibbs iteration of fantasy
particles, using spin notation (+1,-1).
Arguments:
:param k: The number of iterations in PCD-k
:type k: int
:param n_chains: The number of fantasy particles for negative phase
:type k: int
:param dropout: Optional parameter, fraction of neurons in the
previous layer that are not taken into account when
getting a sample.
:type dropout: float
'''
super().__init__(k, dropout)
self.n_chains = n_chains
self.first_call = True
def get_negative_sample(self, v0, W, vbias, hbias):
if self.first_call:
if self.n_chains <= 0:
self.markov_chains = rand_like(v0)
else:
self.markov_chains = 2 * randint(0,
2,
(self.n_chains,) + v0.size()[1:] # size
).float().to(v0.device) - 1
self.first_call = False
for _ in range(self.k):
h = self.get_h_from_v(self.markov_chains, W, hbias)
v = self.get_v_from_h(h, W, vbias)
self.markov_chains = v
return v
# -----------------------------------------------------------------------------
# Optimizers
# -----------------------------------------------------------------------------
class Adam_pm(Adam):
def __init__(self, learning_rate, beta1=0.9, beta2=0.999, eps=1e-8):
'''Update the value of the RBM weights via the Adam algorithm
Arguments:
:param learning_rate: Learning rate
:type learning_rate: float
:param beta1: Adam parameter, regularization of parameters
:type beta1: float
:param beta2: Adam parameter, regularization of parameter norms
:type beta2: float
:param eps: Adam parameter, regularization of divergences
:type eps: float
'''
super().__init__(learning_rate, beta1, beta2, eps)
def get_updates(self, vpos, vneg, W, vbias, hbias):
if self.first_call:
self.m_W = zeros_like(W)
self.m_v = zeros_like(vbias)
self.m_h = zeros_like(hbias)
self.v_W = zeros_like(W)
self.v_v = zeros_like(vbias)
self.v_h = zeros_like(hbias)
self.first_call = False
hpos = tanh(linear(vpos, W, hbias))
hneg = tanh(linear(vneg, W, hbias))
deltaW = (outer_product(hpos, vpos).mean(0)
- outer_product(hneg, vneg).mean(0))
deltah = hpos.mean(0) - hneg.mean(0)
deltav = vpos.mean(0) - vneg.mean(0)
self.m_W *= self.beta1
self.m_W += (1 - self.beta1) * deltaW
self.m_v *= self.beta1
self.m_v += (1 - self.beta1) * deltav
self.m_h *= self.beta1
self.m_h += (1 - self.beta1) * deltah
self.v_W *= self.beta2
self.v_W += (1 - self.beta2) * deltaW * deltaW
self.v_v *= self.beta2
self.v_v += (1 - self.beta2) * deltav * deltav
self.v_h *= self.beta2
self.v_h += (1 - self.beta2) * deltah * deltah
mnorm_W = self.m_W / (1 - self.beta1 ** (self.epoch + 1))
mnorm_v = self.m_v / (1 - self.beta1 ** (self.epoch + 1))
mnorm_h = self.m_h / (1 - self.beta1 ** (self.epoch + 1))
vnorm_W = self.v_W / (1 - self.beta2 ** (self.epoch + 1))
vnorm_v = self.v_v / (1 - self.beta2 ** (self.epoch + 1))
vnorm_h = self.v_h / (1 - self.beta2 ** (self.epoch + 1))
self.weights_update = self.learning_rate * mnorm_W / (sqrt(vnorm_W) + self.eps)
self.vbias_update = self.learning_rate * mnorm_v / (sqrt(vnorm_v) + self.eps)
self.hbias_update = self.learning_rate * mnorm_h / (sqrt(vnorm_h) + self.eps)
return self.weights_update, self.vbias_update, self.hbias_update
class SGD_xi(SGD):
def __init__(self, learning_rate, momentum=0, weight_decay=0):
'''Update the value of the pattern units via Stochastic Gradient Descent
Arguments:
:param learning_rate: Learning rate
:type learning_rate: float
:param weight_decay: Weight decay parameter, to prevent overfitting
:type weight_decay: float
:param momentum: Momentum parameter, for improved learning
:type momentum: float
'''
super().__init__(learning_rate, momentum, weight_decay)
def get_params(self, xi, n_visible):
'''Computes the neuron connections (axons) of the RBM from the patterns
using the Hebbian rule
Arguments:
:param xi: Patterns from which to compute the weights
:type xi: torch.Tensor
:param n_visible: Number of visible neurons in the model
:type n_visible: int
'''
vis = xi[:, :n_visible]
hidd = xi[:, n_visible:]
W = (mm(hidd.t(), vis) / math.sqrt(xi.shape[0])).to(xi.device)
return W
def get_updates(self, vpos, vneg, xi):
'''Obtain the parameter updates
Arguments:
:param vpos: Batch of samples from the training set
:type vpos: torch.Tensor
:param vneg: Batch of samples drawn from the model
:type vneg: torch.Tensor
:param xi: Patterns from which to compute the weights
:type xi: torch.Tensor
'''
if self.first_call:
self.n_vis = vpos.shape[1]
self.pos_batch = vpos.shape[0]
self.neg_batch = vneg.shape[0]
self.K = xi.shape[0]
self.xi_update = zeros_like(xi)
self.first_call = False
self.xi_update *= self.momentum
self.xi_update -= self.learning_rate * self.weight_decay * xi
W = self.get_params(xi, self.n_vis)
xi_vis = xi[:, :self.n_vis]
xi_hid = xi[:, self.n_vis:]
deltaxi_v = (einsum('bj,bk->kj', (vpos, mm(tanh(mm(vpos, W.t())), xi_hid.t()))) / self.pos_batch
- einsum('bj,bk->kj', (vneg, mm(tanh(mm(vneg, W.t())), xi_hid.t()))) / self.neg_batch) / math.sqrt(self.K)
deltaxi_h = (einsum('bj,kj,ba->ka',(vpos, xi_vis, tanh(mm(vpos, W.t())))) / self.pos_batch
- einsum('bj,kj,ba->ka',(vneg, xi_vis, tanh(mm(vneg, W.t())))) / self.neg_batch) / math.sqrt(self.K)
deltaxi = cat([deltaxi_v, deltaxi_h], 1)
self.xi_update.data += self.learning_rate * deltaxi
return self.xi_update