-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscikitimage_Project.py
122 lines (93 loc) · 2.98 KB
/
scikitimage_Project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
File name: scikitimage_Project.py
Author: Alex Ragalie - aragalie.com
Date created: 23 March 2018
Date last modified: 23 March 2018
Python Version: 3.6
OBJECTIVE
Use a 5x5 window to scan over the greyscale image, where a pixel value is a float in the range 0 to 1.
The values have to be normalised so that within one window the smallest value is scaled to 0 and the largest to 1.
OUTPUT
Data export to .csv, in a table with 25 columns and 13,824 rows.
"""
import os
import pandas as pd
import matplotlib.pyplot as plt
from skimage.color import rgb2gray
from skimage import io
# Set the working directory
os.chdir("insert_directory_path_here")
# 1- Test that the algorithm works
# Load a 10x10px image
filename = 'img3.jpg'
img_test = io.imread(filename)
# Convert the image to greyscale
img = rgb2gray(img_test)
# 1.1 - Set each alternate pixel to black/white
i = 1
for col in range(10):
i += 1
for row in range(10):
if i % 2 == 0:
img[row, col] = 0
i += 1
else:
img[row, col] = 1
i += 1
# Save the test file to disk
plt.imsave('test.png', img, cmap=plt.cm.gray)
# 1.2 - Check the result
plt.imshow(img)
# 1.3 - Scan with the 5x5 window and output to .csv
# Create a list with all the column names
col_names_coordinate = []
i = 0
while i < 5:
for x in range(5):
col_names_coordinate.append((i, x))
i += 1
# Create a DataFrame to hold the output
df = pd.DataFrame(columns=col_names_coordinate)
# Save all pixel values in the DataFrame based on the position of the 5x5 window
df_row_number = 0
for x in range(0, img.shape[0], 5):
for y in range(0, img.shape[1], 5):
top_left = (x, y)
bottom_right = (x + 4, y + 4)
new_row = []
for window_h in range(x, x + 5):
for window_w in range(y, y + 5):
new_row.append(img[window_h, window_w])
df.loc[df_row_number] = new_row
df_row_number += 1
# Output the Dataframe to csv
df.to_csv('output_test.csv')
# TEST COMPLETE
# 2 - Import an actual 720x480 image and process it; img2.jpg can be used as well
filename = 'img1.jpg'
img_rgb = io.imread(filename)
# Convert the image to greyscale
img = rgb2gray(img_rgb)
# Create a list with all the column names
col_names_coordinate = []
i = 0
while i < 5:
for x in range(5):
col_names_coordinate.append((i, x))
i += 1
# Create a DataFrame to hold the output
df = pd.DataFrame(columns=col_names_coordinate)
# Save all pixel values in the DataFrame based on the position of the 5x5 window
df_row_number = 0
for x in range(0, img.shape[0], 5):
for y in range(0, img.shape[1], 5):
top_left = (x, y)
bottom_right = (x + 4, y + 4)
new_row = []
for window_h in range(x, x + 5):
for window_w in range(y, y + 5):
new_row.append(img[window_h, window_w])
df.loc[df_row_number] = new_row
df_row_number += 1
# Output the Dataframe to csv
df.to_csv('output.csv')