-
Notifications
You must be signed in to change notification settings - Fork 1
/
lighter_math.cpp
1046 lines (900 loc) · 27.1 KB
/
lighter_math.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <time.h>
#include "lighter_int.hpp"
double ltr_gettime()
{
#ifdef __linux
struct timespec ts;
clock_gettime( CLOCK_MONOTONIC, &ts );
return (double) ts.tv_sec + 0.000000001 * (double) ts.tv_nsec;
#else
clock_t clk = clock();
return (double)( clk ) / (double)( CLOCKS_PER_SEC );
#endif
}
bool Mat4::InvertTo( Mat4& out )
{
float inv[16], det;
int i;
inv[0] = a[5] * a[10] * a[15] -
a[5] * a[11] * a[14] -
a[9] * a[6] * a[15] +
a[9] * a[7] * a[14] +
a[13] * a[6] * a[11] -
a[13] * a[7] * a[10];
inv[4] = -a[4] * a[10] * a[15] +
a[4] * a[11] * a[14] +
a[8] * a[6] * a[15] -
a[8] * a[7] * a[14] -
a[12] * a[6] * a[11] +
a[12] * a[7] * a[10];
inv[8] = a[4] * a[9] * a[15] -
a[4] * a[11] * a[13] -
a[8] * a[5] * a[15] +
a[8] * a[7] * a[13] +
a[12] * a[5] * a[11] -
a[12] * a[7] * a[9];
inv[12] = -a[4] * a[9] * a[14] +
a[4] * a[10] * a[13] +
a[8] * a[5] * a[14] -
a[8] * a[6] * a[13] -
a[12] * a[5] * a[10] +
a[12] * a[6] * a[9];
inv[1] = -a[1] * a[10] * a[15] +
a[1] * a[11] * a[14] +
a[9] * a[2] * a[15] -
a[9] * a[3] * a[14] -
a[13] * a[2] * a[11] +
a[13] * a[3] * a[10];
inv[5] = a[0] * a[10] * a[15] -
a[0] * a[11] * a[14] -
a[8] * a[2] * a[15] +
a[8] * a[3] * a[14] +
a[12] * a[2] * a[11] -
a[12] * a[3] * a[10];
inv[9] = -a[0] * a[9] * a[15] +
a[0] * a[11] * a[13] +
a[8] * a[1] * a[15] -
a[8] * a[3] * a[13] -
a[12] * a[1] * a[11] +
a[12] * a[3] * a[9];
inv[13] = a[0] * a[9] * a[14] -
a[0] * a[10] * a[13] -
a[8] * a[1] * a[14] +
a[8] * a[2] * a[13] +
a[12] * a[1] * a[10] -
a[12] * a[2] * a[9];
inv[2] = a[1] * a[6] * a[15] -
a[1] * a[7] * a[14] -
a[5] * a[2] * a[15] +
a[5] * a[3] * a[14] +
a[13] * a[2] * a[7] -
a[13] * a[3] * a[6];
inv[6] = -a[0] * a[6] * a[15] +
a[0] * a[7] * a[14] +
a[4] * a[2] * a[15] -
a[4] * a[3] * a[14] -
a[12] * a[2] * a[7] +
a[12] * a[3] * a[6];
inv[10] = a[0] * a[5] * a[15] -
a[0] * a[7] * a[13] -
a[4] * a[1] * a[15] +
a[4] * a[3] * a[13] +
a[12] * a[1] * a[7] -
a[12] * a[3] * a[5];
inv[14] = -a[0] * a[5] * a[14] +
a[0] * a[6] * a[13] +
a[4] * a[1] * a[14] -
a[4] * a[2] * a[13] -
a[12] * a[1] * a[6] +
a[12] * a[2] * a[5];
inv[3] = -a[1] * a[6] * a[11] +
a[1] * a[7] * a[10] +
a[5] * a[2] * a[11] -
a[5] * a[3] * a[10] -
a[9] * a[2] * a[7] +
a[9] * a[3] * a[6];
inv[7] = a[0] * a[6] * a[11] -
a[0] * a[7] * a[10] -
a[4] * a[2] * a[11] +
a[4] * a[3] * a[10] +
a[8] * a[2] * a[7] -
a[8] * a[3] * a[6];
inv[11] = -a[0] * a[5] * a[11] +
a[0] * a[7] * a[9] +
a[4] * a[1] * a[11] -
a[4] * a[3] * a[9] -
a[8] * a[1] * a[7] +
a[8] * a[3] * a[5];
inv[15] = a[0] * a[5] * a[10] -
a[0] * a[6] * a[9] -
a[4] * a[1] * a[10] +
a[4] * a[2] * a[9] +
a[8] * a[1] * a[6] -
a[8] * a[2] * a[5];
det = a[0] * inv[0] + a[1] * inv[4] + a[2] * inv[8] + a[3] * inv[12];
if( det == 0 )
return false;
det = 1.0f / det;
for( i = 0; i < 16; ++i )
out.a[ i ] = inv[ i ] * det;
return true;
}
static FORCEINLINE float TriangleArea( float a, float b, float c )
{
float p = ( a + b + c ) * 0.5f;
float presqrt = p * ( p - a ) * ( p - b ) * ( p - c );
if( presqrt < 0 )
return 0;
return sqrtf( presqrt );
}
float TriangleArea( const Vec2& P1, const Vec2& P2, const Vec2& P3 )
{
float a = ( P2 - P1 ).Length();
float b = ( P3 - P2 ).Length();
float c = ( P1 - P3 ).Length();
return TriangleArea( a, b, c );
}
float TriangleArea( const Vec3& P1, const Vec3& P2, const Vec3& P3 )
{
float a = ( P2 - P1 ).Length();
float b = ( P3 - P2 ).Length();
float c = ( P1 - P3 ).Length();
return TriangleArea( a, b, c );
}
float CalculateSampleArea( const Vec2& tex1, const Vec2& tex2, const Vec2& tex3, const Vec3& pos1, const Vec3& pos2, const Vec3& pos3 )
{
float lmarea = TriangleArea( tex1, tex2, tex3 );
float coarea = TriangleArea( pos1, pos2, pos3 );
return lmarea > 0 ? coarea / lmarea : 0;
}
//
// TRANSFORMATION
//
void TransformPositions( Vec3* out, Vec3* arr, size_t count, const Mat4& matrix )
{
for( size_t i = 0; i < count; ++i )
out[i] = matrix.TransformPos( arr[i] );
}
void TransformNormals( Vec3* out, Vec3* arr, size_t count, const Mat4& matrix )
{
Mat4 nrmtx;
matrix.GenNormalMatrix( nrmtx );
for( size_t i = 0; i < count; ++i )
out[i] = nrmtx.TransformNormal( arr[i] ).Normalized();
}
//
// RASTERIZATION
//
// - p1, p2, p3 - in image space
//
void RasterizeTriangle2D( Vec3* image, i32 width, i32 height, const Vec2& p1, const Vec2& p2, const Vec2& p3, const Vec3& va1, const Vec3& va2, const Vec3& va3 )
{
i32 maxX = (i32) TMAX( p1.x, TMAX( p2.x, p3.x ) );
i32 minX = (i32) TMIN( p1.x, TMIN( p2.x, p3.x ) );
i32 maxY = (i32) TMAX( p1.y, TMAX( p2.y, p3.y ) );
i32 minY = (i32) TMIN( p1.y, TMIN( p2.y, p3.y ) );
if( maxX < 0 || minX >= width || maxY < 0 || minY >= height )
return;
if( maxX < 0 ) maxX = 0;
if( minX >= width ) minX = width - 1;
if( maxY < 0 ) maxY = 0;
if( minY >= height ) minY = height - 1;
Vec2 p1p2 = p2 - p1;
Vec2 p1p3 = p3 - p1;
float vcross = Vec2Cross( p1p2, p1p3 );
if( vcross == 0 )
return;
Vec3 va1va2 = va2 - va1, va1va3 = va3 - va1;
for( i32 x = minX; x <= maxX; x++ )
{
for( i32 y = minY; y <= maxY; y++ )
{
Vec2 q = { x - p1.x, y - p1.y };
float s = Vec2Cross( q, p1p3 ) / vcross;
float t = Vec2Cross( p1p2, q ) / vcross;
if( ( s >= 0 ) && ( t >= 0 ) && ( s + t <= 1 ) )
{
image[ x + width * y ] = va1 + va1va2 * s + va1va3 * t;
}
}
}
}
void RasterizeTriangle2D_x2_ex( Vec3* img1, Vec3* img2, Vec4* img3, i32 width, i32 height, float margin,
const Vec2& p1, const Vec2& p2, const Vec2& p3,
const Vec3& va1, const Vec3& va2, const Vec3& va3,
const Vec3& vb1, const Vec3& vb2, const Vec3& vb3,
const Vec4& vc1, const Vec4& vc2, const Vec4& vc3 )
{
i32 maxX = i32( TMAX( p1.x, TMAX( p2.x, p3.x ) ) + margin );
i32 minX = i32( TMIN( p1.x, TMIN( p2.x, p3.x ) ) - margin );
i32 maxY = i32( TMAX( p1.y, TMAX( p2.y, p3.y ) ) + margin );
i32 minY = i32( TMIN( p1.y, TMIN( p2.y, p3.y ) ) - margin );
if( maxX < 0 || minX >= width || maxY < 0 || minY >= height )
return;
if( minX < 0 ) minX = 0;
if( maxX >= width ) maxX = width - 1;
if( minY < 0 ) minY = 0;
if( maxY >= height ) maxY = height - 1;
Vec2 p1p2 = p2 - p1;
Vec2 p1p3 = p3 - p1;
float vcross = Vec2Cross( p1p2, p1p3 );
if( vcross == 0 )
return;
Vec2 n1 = p1p2.Perp().Normalized();
Vec2 n2 = ( p3 - p2 ).Perp().Normalized();
Vec2 n3 = -p1p3.Perp().Normalized();
float d1 = Vec2Dot( n1, p1 );
float d2 = Vec2Dot( n2, p2 );
float d3 = Vec2Dot( n3, p3 );
float MG = margin;
Vec3 va1va2 = va2 - va1, va1va3 = va3 - va1;
Vec3 vb1vb2 = vb2 - vb1, vb1vb3 = vb3 - vb1;
Vec4 vc1vc2 = vc2 - vc1, vc1vc3 = vc3 - vc1;
for( i32 x = minX; x <= maxX; x++ )
{
for( i32 y = minY; y <= maxY; y++ )
{
Vec2 q = { x - p1.x, y - p1.y };
float s = Vec2Cross( q, p1p3 ) / vcross;
float t = Vec2Cross( p1p2, q ) / vcross;
s = TMAX( TMIN( s, 1.0f ), 0.0f );
t = TMAX( TMIN( t, 1.0f ), 0.0f );
Vec2 p = { (float) x, (float) y };
float pd1 = Vec2Dot( p, n1 ), pd2 = Vec2Dot( p, n2 ), pd3 = Vec2Dot( p, n3 );
if( ( pd1 <= d1 + MG && pd2 <= d2 + MG && pd3 <= d3 + MG ) || ( pd1 + MG >= d1 && pd2 + MG >= d2 && pd3 + MG >= d3 ) )
{
img1[ x + width * y ] = va1 + va1va2 * s + va1va3 * t;
img2[ x + width * y ] = vb1 + vb1vb2 * s + vb1vb3 * t;
img3[ x + width * y ] = vc1 + vc1vc2 * s + vc1vc3 * t;
}
}
}
}
float PlaneTriangleIntersect( const Vec3& N, float D, const Vec3& P1, const Vec3& P2, const Vec3& P3 )
{
float proj1 = Vec3Dot( N, P1 ) - D;
float proj2 = Vec3Dot( N, P2 ) - D;
float proj3 = Vec3Dot( N, P3 ) - D;
if( proj1 * proj2 > 0 && proj1 * proj3 > 0 )
return proj1;
return 0;
}
float IntersectLineSegmentTriangle( const Vec3& L1, const Vec3& L2, const Vec3& P1, const Vec3& P2, const Vec3& P3 )
{
Vec3 u = P2 - P1;
Vec3 v = P3 - P1;
Vec3 n = Vec3Cross( u, v );
if( n.NearZero() )
return 2.0f;
Vec3 dir = L2 - L1;
Vec3 w0 = L1 - P1;
float a = -Vec3Dot( n, w0 );
float b = Vec3Dot( n, dir );
if( fabs( b ) < SMALL_FLOAT )
return 2.0f;
float r = a / b;
if( r < 0.0f || r > 1.0f )
return 2.0f;
Vec3 I = L1 + r * dir;
// is I inside T?
float uu = Vec3Dot( u, u );
float uv = Vec3Dot( u, v );
float vv = Vec3Dot( v, v );
Vec3 w = I - P1;
float wu = Vec3Dot( w, u );
float wv = Vec3Dot( w, v );
float D = uv * uv - uu * vv;
// get and test parametric coords
float s = ( uv * wv - vv * wu ) / D;
if( s < 0.0f || s > 1.0f )
return 2.0f;
float t = ( uv * wu - uu * wv ) / D;
if( t < 0.0f || ( s + t ) > 1.0f )
return 2.0f;
return r;
}
void Generate_Gaussian_Kernel( float* out, int ext, float radius )
{
float sum = 0.0f;
float multconst = 1.0f / sqrtf( 2.0f * (float) M_PI * radius * radius );
for( int i = -ext; i <= ext; ++i )
sum += out[ i + ext ] = exp( -0.5f * pow( (float) i / radius, 2.0f ) ) * multconst;
for( int i = -ext; i <= ext; ++i )
out[ i + ext ] /= sum;
}
void Convolve_Transpose( float* src, float* dst, u32 width, u32 height, int conext, float* kernel, float* tmp )
{
for( u32 y = 0; y < height; ++y )
{
// write row to temporary buffer, extend data beyond sides
memcpy( tmp + conext * 3, src + y * width * 3, sizeof(float) * width * 3 );
for( int i = 0; i < conext; ++i )
{
tmp[ i * 3 + 0 ] = tmp[ conext * 3 + 0 ];
tmp[ i * 3 + 1 ] = tmp[ conext * 3 + 1 ];
tmp[ i * 3 + 2 ] = tmp[ conext * 3 + 2 ];
tmp[ ( conext + width + i ) * 3 + 0 ] = tmp[ ( conext + width - 1 ) * 3 + 0 ];
tmp[ ( conext + width + i ) * 3 + 1 ] = tmp[ ( conext + width - 1 ) * 3 + 1 ];
tmp[ ( conext + width + i ) * 3 + 2 ] = tmp[ ( conext + width - 1 ) * 3 + 2 ];
}
// convolve with the kernel
for( u32 x = 0; x < width; ++x )
{
float* src_p = tmp + ( x + conext ) * 3;
float* dst_p = dst + ( y + height * x ) * 3;
float sum[3] = { 0.0f, 0.0f, 0.0f };
for( int i = -conext; i <= conext; ++i )
{
float kq = kernel[ i + conext ];
sum[0] += src_p[ i * 3 + 0 ] * kq;
sum[1] += src_p[ i * 3 + 1 ] * kq;
sum[2] += src_p[ i * 3 + 2 ] * kq;
}
LTR_VEC3_SET( dst_p, sum[0], sum[1], sum[2] );
}
}
}
void Downsample2X( float* dst, unsigned dstW, unsigned dstH, float* src, unsigned srcW, unsigned srcH )
{
unsigned x, y, sx0, sy0, sx1, sy1;
Vec3 c00, c10, c01, c11, avg;
for( y = 0; y < dstH; ++y )
{
for( x = 0; x < dstW; ++x )
{
sx0 = ( x * 2 ) % srcW;
sy0 = ( y * 2 ) % srcH;
sx1 = ( x * 2 + 1 ) % srcW;
sy1 = ( y * 2 + 1 ) % srcH;
c00 = V3P( src + ( sx0 + sy0 * srcW ) * 3 );
c10 = V3P( src + ( sx1 + sy0 * srcW ) * 3 );
c01 = V3P( src + ( sx0 + sy1 * srcW ) * 3 );
c11 = V3P( src + ( sx1 + sy1 * srcW ) * 3 );
avg = ( c00 + c10 + c01 + c11 ) * 0.25f;
dst[ ( x + y * dstW ) * 3 + 0 ] = avg.x;
dst[ ( x + y * dstW ) * 3 + 1 ] = avg.y;
dst[ ( x + y * dstW ) * 3 + 2 ] = avg.z;
}
}
}
#define BSP_NO_HIT 2.0f
#define BSP_MAX_NODE_COUNT 16
#define BSP_MAX_NODE_DEPTH 32
void BSPNode::Split( int depth )
{
if( triangles.size() > BSP_MAX_NODE_COUNT &&
depth < BSP_MAX_NODE_DEPTH )
{
if( PickSplitPlane() )
{
front_node = new BSPNode;
back_node = new BSPNode;
for( size_t i = 0; i < triangles.size(); ++i )
AddTriangleSplit( &triangles[i] );
if( front_node->triangles.size() + back_node->triangles.size() > triangles.size() * 3 / 2 )
{
// split wasn't worth it, undo
delete front_node;
delete back_node;
front_node = NULL;
back_node = NULL;
return;
}
TriVector().swap( triangles );
front_node->Split( depth + 1 );
back_node->Split( depth + 1 );
}
}
}
void BSPNode::AddTriangleSplit( Triangle* tri )
{
Vec3 P1 = tri->P1;
Vec3 P2 = tri->P2;
Vec3 P3 = tri->P3;
// assume that plane is picked (valid N, D)
float proj1 = Vec3Dot( N, P1 ) - D;
float proj2 = Vec3Dot( N, P2 ) - D;
float proj3 = Vec3Dot( N, P3 ) - D;
if( proj1 * proj2 >= -SMALL_FLOAT && proj1 * proj3 >= -SMALL_FLOAT )
{
( proj1 + proj2 + proj3 > 0 ? front_node : back_node )->triangles.push_back( *tri );
return;
}
Vec3 S1 = P1, S2 = P2, S3 = P3;
float td12 = proj1 - proj2; // opposite signs expected, both must be 0 for diff to be 0
if( td12 )
S1 = TLERP( P1, P2, fabs( proj1 / td12 ) );
float td23 = proj2 - proj3; // opposite signs expected, both must be 0 for diff to be 0
if( td23 )
S2 = TLERP( P2, P3, fabs( proj2 / td23 ) );
float td31 = proj3 - proj1; // opposite signs expected, both must be 0 for diff to be 0
if( td31 )
S3 = TLERP( P3, P1, fabs( proj3 / td31 ) );
front_node->triangles.push_back( *tri );
back_node->triangles.push_back( *tri );
}
float BSPNode::IntersectRay( const Vec3& from, const Vec3& to, Vec3* outnormal )
{
if( front_node ) // node split
{
float d_from = Vec3Dot( from, N ) - D;
float d_to = Vec3Dot( to, N ) - D;
if( d_from < 0 )
{
float hit = back_node->IntersectRay( from, to, outnormal );
if( hit < 1.0f )
return hit;
return d_to > 0 ? front_node->IntersectRay( from, to, outnormal ) : BSP_NO_HIT;
}
else
{
float hit = front_node->IntersectRay( from, to, outnormal );
if( hit < 1.0f )
return hit;
return d_to < 0 ? back_node->IntersectRay( from, to, outnormal ) : BSP_NO_HIT;
}
}
else
{
float closest_hit = BSP_NO_HIT;
Triangle* closest_tri = NULL;
for( size_t i = 0; i < triangles.size(); ++i )
{
Triangle& T = triangles[i];
float hit = IntersectLineSegmentTriangle( from, to, T.P1, T.P2, T.P3 );
if( hit < closest_hit )
{
closest_hit = hit;
closest_tri = &T;
// printf( "HIT %f from=%.2f %.2f %.2f to=%.2f %.2f %.2f p1=%.4f %.4f %.4f p2=%.4f %.4f %.4f p3=%.4f %.4f %.4f",
// hit,from.x,from.y,from.z,to.x,to.y,to.z,T.P1.x,T.P1.y,T.P1.z,T.P2.x,T.P2.y,T.P2.z,T.P3.x,T.P3.y,T.P3.z);
}
}
if( outnormal && closest_tri )
{
*outnormal = Vec3Cross( closest_tri->P3 - closest_tri->P1, closest_tri->P2 - closest_tri->P1 ).Normalized();
}
return closest_hit;
}
}
template< typename T > void TFINDADD( std::vector<T>& vec, const T& v )
{
size_t at = 0;
for( ; at < vec.size(); ++at )
{
if( vec[ at ] == v )
break;
}
if( at == vec.size() )
vec.push_back( v );
}
bool BSPNode::PickSplitPlane()
{
Vec3Vector points;
for( size_t i = 0; i < triangles.size(); ++i )
{
Triangle& T = triangles[i];
TFINDADD( points, T.P1 );
TFINDADD( points, T.P2 );
TFINDADD( points, T.P3 );
}
// find longest direction and center
Vec3 center = {0,0,0};
Vec3 curdir = {0,0,0};
float curlen = 0;
for( size_t i = 0; i < points.size(); ++i )
{
center += points[i];
for( size_t j = i + 1; j < points.size(); ++j )
{
Vec3 newdir = points[j] - points[i];
float newlen = newdir.LengthSq();
if( newlen > curlen )
{
curdir = newdir;
curlen = newlen;
}
}
}
if( points.size() )
center /= (float) points.size();
// find centers at both sides of plane
N = curdir.Normalized();
D = Vec3Dot( N, center );
// evaluate viability of splitting
int numA = 0;
int numB = 0;
float d1, d2, d3;
for( size_t i = 0; i < triangles.size(); ++i )
{
Triangle& T = triangles[i];
d1 = Vec3Dot( T.P1, N ) - D;
d2 = Vec3Dot( T.P2, N ) - D;
d3 = Vec3Dot( T.P3, N ) - D;
if( d1 * d2 > -SMALL_FLOAT && d2 * d3 > -SMALL_FLOAT )
{
if( d1 > 0 )
numA++;
else
numB++;
}
else
{
numA += ( d1 > 0 ) + ( d2 > 0 ) + ( d3 > 0 );
numB += ( d1 <=0 ) + ( d2 <=0 ) + ( d3 <=0 );
}
}
if( numA != 0 && numB != 0 && numA + numB < triangles.size() * 1.7f )
{
float q = (float) numA / (float) numB;
if( q < 1 ) q = 1 / q;
return q < 3.0f;
}
return false;
}
bool RayAABBTest( const Vec3& ro, const Vec3& inv_n, float len, const Vec3& bbmin, const Vec3& bbmax )
{
float tmin = -FLT_MAX, tmax = FLT_MAX;
if( inv_n.x != 0.0f )
{
float tx1 = ( bbmin.x - ro.x ) * inv_n.x;
float tx2 = ( bbmax.x - ro.x ) * inv_n.x;
tmin = TMAX( tmin, TMIN( tx1, tx2 ) );
tmax = TMIN( tmax, TMAX( tx1, tx2 ) );
}
if( inv_n.y != 0.0f )
{
float ty1 = ( bbmin.y - ro.y ) * inv_n.y;
float ty2 = ( bbmax.y - ro.y ) * inv_n.y;
tmin = TMAX( tmin, TMIN( ty1, ty2 ) );
tmax = TMIN( tmax, TMAX( ty1, ty2 ) );
}
if( inv_n.z != 0.0f )
{
float tz1 = ( bbmin.z - ro.z ) * inv_n.z;
float tz2 = ( bbmax.z - ro.z ) * inv_n.z;
tmin = TMAX( tmin, TMIN( tz1, tz2 ) );
tmax = TMIN( tmax, TMAX( tz1, tz2 ) );
}
return tmax >= tmin && len >= tmin;
}
#define AABBTREE_MIN_SPLIT_SIZE 4
#define AABBTREE_MAX_SPLIT_DEPTH 16
#define AABBTREE_SIZE_SPLIT_FACTOR 3
struct _AABBTree_SortIndices
{
AABB3* aabbs;
Vec3 splitnrm;
bool
#ifdef __GNUC__
__attribute__ ((noinline)) // FFS, GCC!
#endif
operator () ( int32_t idx_a, int32_t idx_b )
{
float dot_a = Vec3Dot( splitnrm, aabbs[ idx_a ].Center() );
float dot_b = Vec3Dot( splitnrm, aabbs[ idx_b ].Center() );
return dot_a < dot_b;
}
};
void AABBTree::SetAABBs( AABB3* aabbs, size_t count )
{
m_nodes.clear();
m_itemidx.clear();
m_nodes.push_back( Node() );
m_nodes[0].bbmin = V3(FLT_MAX);
m_nodes[0].bbmax = V3(-FLT_MAX);
m_nodes[0].ch = -1;
m_nodes[0].ido = -1;
if( count == 0 )
return;
// BVH generation...
std::vector< int32_t > sampidx;
for( size_t i = 0; i < count; ++i )
{
if( aabbs[ i ].Valid() )
sampidx.push_back( i );
}
_MakeNode( 0, aabbs, VDATA( sampidx ), sampidx.size(), 0 );
}
void AABBTree::_MakeNode( int32_t node, AABB3* aabbs, int32_t* sampidx_data, size_t sampidx_count, int depth )
{
AABBTree::Node& N = m_nodes[ node ];
Vec3 bbmin = V3( FLT_MAX ), bbmax = V3( -FLT_MAX );
for( size_t i = 0; i < sampidx_count; ++i )
{
AABB3& bb = aabbs[ sampidx_data[ i ] ];
bbmin = Vec3::Min( bbmin, bb.bbmin );
bbmax = Vec3::Max( bbmax, bb.bbmax );
}
N.bbmin = bbmin;
N.bbmax = bbmax;
AABB3 Nbb = { bbmin, bbmax };
float Nbbvol = Nbb.Volume();
if( sampidx_count > AABBTREE_MIN_SPLIT_SIZE &&
depth < AABBTREE_MAX_SPLIT_DEPTH )
{
// split
N.ido = -1;
N.ch = -1;
int numsplittable = 0;
Vec3 sbbmin = V3(FLT_MAX), sbbmax = V3(-FLT_MAX);
for( size_t i = 0; i < sampidx_count; ++i )
{
AABB3& bb = aabbs[ sampidx_data[ i ] ];
if( bb.Volume() * AABBTREE_SIZE_SPLIT_FACTOR < Nbbvol )
{
numsplittable++;
sbbmin = Vec3::Min( sbbmin, bb.bbmin );
sbbmax = Vec3::Max( sbbmax, bb.bbmax );
}
}
Vec3 sbbsize = sbbmax - sbbmin;
Vec3 splitnrm = V3(0,0,1);
if( sbbsize.x > sbbsize.y && sbbsize.x > sbbsize.z ) splitnrm = V3(1,0,0);
else if( sbbsize.y > sbbsize.x && sbbsize.y > sbbsize.z ) splitnrm = V3(0,1,0);
if( numsplittable < AABBTREE_MIN_SPLIT_SIZE )
goto actually_make_leaf;
std::vector< int32_t > subsampidx_self, subsampidx_split;
for( size_t i = 0; i < sampidx_count; ++i )
{
AABB3& bb = aabbs[ sampidx_data[ i ] ];
if( bb.Volume() * AABBTREE_SIZE_SPLIT_FACTOR < Nbbvol )
subsampidx_split.push_back( sampidx_data[ i ] );
else
subsampidx_self.push_back( sampidx_data[ i ] );
}
if( subsampidx_self.size() )
{
// add big items directly to node
N.ido = m_itemidx.size();
m_itemidx.push_back( subsampidx_self.size() );
m_itemidx.reserve( m_itemidx.size() + subsampidx_self.size() );
for( size_t i = 0; i < subsampidx_self.size(); ++i )
m_itemidx.push_back( subsampidx_self[ i ] );
}
_AABBTree_SortIndices ABTSI = { aabbs, splitnrm };
std::sort( subsampidx_split.begin(), subsampidx_split.end(), ABTSI );
size_t mid = subsampidx_split.size() / 2;
// -- DO NOT TOUCH <N> ANYMORE --
m_nodes.push_back( AABBTree::Node() );
_MakeNode( m_nodes.size() - 1, aabbs, VDATA( subsampidx_split ), mid, depth + 1 );
m_nodes[ node ].ch = m_nodes.size();
m_nodes.push_back( AABBTree::Node() );
_MakeNode( m_nodes.size() - 1, aabbs, VDATA( subsampidx_split, mid ), subsampidx_split.size() - mid, depth + 1 );
}
else
{
actually_make_leaf:
// make leaf
N.ido = m_itemidx.size();
N.ch = -1;
m_itemidx.push_back( sampidx_count );
m_itemidx.reserve( m_itemidx.size() + sampidx_count );
for( size_t i = 0; i < sampidx_count; ++i )
m_itemidx.push_back( sampidx_data[ i ] );
}
}
void TriTree::SetTris( Triangle* tris, size_t count )
{
m_tris.clear();
std::vector< AABB3 > bbs;
for( size_t i = 0; i < count; ++i )
{
if( tris[ i ].CheckIsUseful() )
{
AABB3 bb;
tris[ i ].GetAABB( bb );
bbs.push_back( bb );
m_tris.push_back( tris[ i ] );
}
}
m_bbTree.SetAABBs( VDATA( bbs ), bbs.size() );
}
struct AnyHitRayQuery : BaseRayQuery
{
AnyHitRayQuery( Triangle* ta, const Vec3& r0, const Vec3& r1 ) : hit(false), tris( ta ), ray_end( r1 )
{
SetRay( r0, r1 );
}
bool operator () ( int32_t* ids, int32_t count )
{
for( int32_t i = 0; i < count; ++i )
{
Triangle& T = tris[ ids[ i ] ];
hit = IntersectLineSegmentTriangle( ray_origin, ray_end, T.P1, T.P2, T.P3 ) < 1.0f;
if( hit )
return false;
}
return true;
}
bool hit;
Triangle* tris;
Vec3 ray_end;
};
bool TriTree::IntersectRay( const Vec3& from, const Vec3& to )
{
AnyHitRayQuery query( VDATA( m_tris ), from, to );
m_bbTree.RayQuery( query );
return query.hit;
}
struct ClosestHitRayQuery : BaseRayQuery
{
ClosestHitRayQuery( Triangle* ta, const Vec3& r0, const Vec3& r1 ) : closest(2), hitid(-1), tris( ta ), ray_end( r1 )
{
SetRay( r0, r1 );
}
bool operator () ( int32_t* ids, int32_t count )
{
for( int32_t i = 0; i < count; ++i )
{
Triangle& T = tris[ ids[ i ] ];
float dist = IntersectLineSegmentTriangle( ray_origin, ray_end, T.P1, T.P2, T.P3 );
if( dist < closest )
{
closest = dist;
hitid = ids[ i ];
}
}
return true;
}
float closest;
int32_t hitid;
Triangle* tris;
Vec3 ray_end;
};
float TriTree::IntersectRayDist( const Vec3& from, const Vec3& to, int32_t* outtid )
{
ClosestHitRayQuery query( VDATA( m_tris ), from, to );
m_bbTree.RayQuery( query );
if( query.hitid != -1 && outtid )
{
*outtid = query.hitid;
}
return query.closest;
}
static float PointTriangleDistance( const Vec3& pt, const Vec3& t0, const Vec3& t1, const Vec3& t2 )
{
// plane
Vec3 nrm = Vec3Cross( t1 - t0, t2 - t0 ).Normalized();
float pd = fabsf( Vec3Dot( nrm, pt ) - Vec3Dot( nrm, t0 ) );
// tangents
Vec3 tan0 = ( t1 - t0 ).Normalized();
Vec3 tan1 = ( t2 - t1 ).Normalized();
Vec3 tan2 = ( t0 - t2 ).Normalized();
// bounds
float t0p = Vec3Dot( tan0, pt ), t0min = Vec3Dot( tan0, t0 ), t0max = Vec3Dot( tan0, t1 );
float t1p = Vec3Dot( tan1, pt ), t1min = Vec3Dot( tan1, t1 ), t1max = Vec3Dot( tan1, t2 );
float t2p = Vec3Dot( tan2, pt ), t2min = Vec3Dot( tan2, t2 ), t2max = Vec3Dot( tan2, t0 );
// check corners
if( t0min >= t0p && t2max <= t2p ) return ( pt - t0 ).Length();
if( t1min >= t1p && t0max <= t0p ) return ( pt - t1 ).Length();
if( t2min >= t2p && t1max <= t1p ) return ( pt - t2 ).Length();
// edge normals
Vec3 en0 = Vec3Cross( t1 - t0, nrm ).Normalized();
Vec3 en1 = Vec3Cross( t2 - t1, nrm ).Normalized();
Vec3 en2 = Vec3Cross( t0 - t2, nrm ).Normalized();
// signed distances from edges
float ptd0 = Vec3Dot( en0, pt ) - Vec3Dot( en0, t0 );
float ptd1 = Vec3Dot( en1, pt ) - Vec3Dot( en1, t1 );
float ptd2 = Vec3Dot( en2, pt ) - Vec3Dot( en2, t2 );
// check edges
if( ptd0 >= 0 && t0p >= t0min && t0p <= t0max ) return V2( pd, ptd0 ).Length();
if( ptd1 >= 0 && t1p >= t1min && t1p <= t1max ) return V2( pd, ptd1 ).Length();
if( ptd2 >= 0 && t2p >= t2min && t2p <= t2max ) return V2( pd, ptd2 ).Length();
// inside
return pd;
}
static bool PointProjOnTriangle( const Vec3& pt, const Vec3& t0, const Vec3& t1, const Vec3& t2 )
{
// plane
Vec3 nrm = Vec3Cross( t1 - t0, t2 - t0 ).Normalized();
// tangents
Vec3 tan0 = ( t1 - t0 ).Normalized();
Vec3 tan1 = ( t2 - t1 ).Normalized();
Vec3 tan2 = ( t0 - t2 ).Normalized();
// bounds
float t0p = Vec3Dot( tan0, pt ), t0min = Vec3Dot( tan0, t0 ), t0max = Vec3Dot( tan0, t1 );
float t1p = Vec3Dot( tan1, pt ), t1min = Vec3Dot( tan1, t1 ), t1max = Vec3Dot( tan1, t2 );
float t2p = Vec3Dot( tan2, pt ), t2min = Vec3Dot( tan2, t2 ), t2max = Vec3Dot( tan2, t0 );
// check corners
if( t0min - SMALL_FLOAT > t0p && t2max + SMALL_FLOAT < t2p ) return false;
if( t1min - SMALL_FLOAT > t1p && t0max + SMALL_FLOAT < t0p ) return false;
if( t2min - SMALL_FLOAT > t2p && t1max + SMALL_FLOAT < t1p ) return false;
// edge normals
Vec3 en0 = Vec3Cross( t1 - t0, nrm ).Normalized();
Vec3 en1 = Vec3Cross( t2 - t1, nrm ).Normalized();
Vec3 en2 = Vec3Cross( t0 - t2, nrm ).Normalized();
// signed distances from edges
float ptd0 = Vec3Dot( en0, pt ) - Vec3Dot( en0, t0 );
float ptd1 = Vec3Dot( en1, pt ) - Vec3Dot( en1, t1 );
float ptd2 = Vec3Dot( en2, pt ) - Vec3Dot( en2, t2 );
// check edges
if( ptd0 > SMALL_FLOAT && t0p - SMALL_FLOAT > t0min && t0p + SMALL_FLOAT < t0max ) return false;
if( ptd1 > SMALL_FLOAT && t1p - SMALL_FLOAT > t1min && t1p + SMALL_FLOAT < t1max ) return false;
if( ptd2 > SMALL_FLOAT && t2p - SMALL_FLOAT > t2min && t2p + SMALL_FLOAT < t2max ) return false;
// inside
return true;
}
struct DistanceBBQuery
{
DistanceBBQuery( Triangle* ta, const Vec3& p, float d ) : pos( p ), dist( d ), tris( ta ){ RecalcBB(); }
void operator () ( int32_t* ids, int32_t count )
{
for( int32_t i = 0; i < count; ++i )
{
Triangle& T = tris[ ids[ i ] ];
float ndst = PointTriangleDistance( pos, T.P1, T.P2, T.P3 );
if( ndst < dist )
{
dist = ndst;
RecalcBB();
}
}
}
FORCEINLINE void RecalcBB()
{
bbmin = pos - V3(dist);
bbmax = pos + V3(dist);
}
Vec3 bbmin, bbmax;
Vec3 pos;
float dist;
Triangle* tris;
};
float TriTree::GetDistance( const Vec3& p, float dist )
{
DistanceBBQuery query( VDATA( m_tris ), p, dist );
m_bbTree.DynBBQuery( query );
return query.dist;
}
struct SampleOffsetQuery
{
SampleOffsetQuery( TriTree* tt, Triangle* ta, Vec3& p, Vec3 n, float d ) : tree( tt ), tris( ta ), P( p ), N( n ), dist( d ){}
void operator () ( int32_t* ids, int32_t count )
{
for( int32_t i = 0; i < count; ++i )
{
Triangle& T = tris[ ids[ i ] ];
float ndst = PointTriangleDistance( P, T.P1, T.P2, T.P3 );