layout | title |
---|---|
../../layouts/CheatSheet.astro |
Pandas Cheatsheet |
Pandas is a Python library for data analysis. It provides high-performance, easy-to-use data structures and data analysis tools. Pandas is built on top of NumPy, which provides efficient storage and manipulation of dense data.
import pandas as pd
import numpy as np
Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is tidy when:
- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.
# Read a CSV file
df = pd.read_csv('file.csv')
# Read a CSV file with a specific separator
df = pd.read_csv('file.csv', sep=';')
# Read a excel file
df = pd.read_excel('file.xlsx')
# Read a JSON file
df = pd.read_json('file.json')
# Read a HTML file
df = pd.read_html('file.html')
# Read a SQL file
df = pd.read_sql('file.sql')
# Read a dataframes from a dictionary
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
# Read a dataframes from a list
df = pd.DataFrame([[1, 2], [3, 4]], columns=['col1', 'col2'])
# Read a dataframes from a numpy array
df = pd.DataFrame(np.array([[1, 2], [3, 4]]), columns=['col1', 'col2'])
# Create a dataframe from a dictionary
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3 |
| 1 | 2 | 4 |
# Transpose a dataframe
df.T
Output:
| | 0 | 1 |
| ---- | --- | --- |
| col1 | 1 | 2 |
| col2 | 3 | 4 |
# Sort a dataframe by a column
df.sort_values(by='col1')
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3 |
| 1 | 2 | 4 |
# Sort a dataframe by a column in descending order
df.sort_values(by='col1', ascending=False)
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 1 | 2 | 4 |
| 0 | 1 | 3 |
# Sort a dataframe by multiple columns
df.sort_values(by=['col1', 'col2'])
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3 |
| 1 | 2 | 4 |
Assume we have a dataframe df with the following columns:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3 |
| 1 | 2 | 4 |
| 2 | 1 | 5 |
| 3 | 2 | 6 |
| 4 | 1 | 7 |
| 5 | 2 | 8 |
# Group a dataframe by a column
df.groupby('col1')
# Group a dataframe by a column and get the sum of the other columns
df.groupby('col1').sum()
Output:
| | col2 |
| ---- | ---- |
| col1 | |
| 1 | 15 |
| 2 | 18 |
# Group a dataframe by a column and get the mean of the other columns
df.groupby('col1').mean()
Output:
| | col2 |
| ---- | ---- |
| col1 | |
| 1 | 5 |
| 2 | 6 |
Assume we have two dataframes df1 and df2 with the following columns:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3 |
| 1 | 2 | 4 | df1 |
| 2 | 1 | 5 |
| 3 | 2 | 6 |
| | col1 | col3 |
| --- | ---- | ---- |
| 0 | 1 | 7 |
| 1 | 2 | 8 | df2 |
| 2 | 1 | 9 |
| 3 | 2 | 10 |
# Merge two dataframes on a column
pd.merge(df1, df2, on='col1')
Output:
| | col1 | col2 | col3 |
| --- | ---- | ---- | ---- |
| 0 | 1 | 3 | 7 |
| 1 | 1 | 3 | 9 |
| 2 | 1 | 5 | 7 |
| 3 | 1 | 5 | 9 |
# Merge two dataframes on multiple columns
pd.merge(df1, df2, on=['col1', 'col2'])
Output:
| | col1 | col2 | col3 |
| --- | ---- | ---- | ---- |
| 0 | 1 | 3 | 7 |
| 1 | 1 | 5 | 7 |
#Concatenate two dataframes by rows
pd.concat([df1, df2], axis=0)
Output:
| | col1 | col2 | col3 |
| --- | ---- | ---- | ---- |
| 0 | 1 | 3 | |
| 1 | 2 | 4 | |
| 2 | 1 | 5 | |
| 3 | 2 | 6 | |
| 0 | 1 | | 7 |
| 1 | 2 | | 8 |
| 2 | 1 | | 9 |
| 3 | 2 | | 10 |
Pivot tables are a powerful tool for summarizing data. They allow you to group and aggregate data in different ways.
Assume we have a dataframe df with the following columns:
| | col1 | col2 | col3 |
| --- | ---- | ---- | ---- |
| 0 | 1 | 3 | 7 |
| 1 | 1 | 3 | 9 |
| 2 | 1 | 5 | 7 |
| 3 | 1 | 5 | 9 |
# Create a pivot table
df.pivot_table(index='col1', columns='col2', values='col3')
Output:
| col2 | 3 | 5 |
| ---- | --- | --- |
| col1 | | |
| 1 | 8 | 8 |
# Create a pivot table with multiple aggregations
df.pivot_table(index='col1', columns='col2', values='col3', aggfunc=[np.mean, np.sum])
Output:
| col2 | 3 | 5 |
| ---- | -------- | -------- |
| col1 | | |
| 1 | mean sum | mean sum |
| | 8 | 8 |
# Import matplotlib
import matplotlib.pyplot as plt
# Create a line plot
df.plot.line()
# Create a bar plot
df.plot.bar()
# Create a histogram
df.plot.hist()
# Create a box plot
df.plot.box()
Time series data is a special type of data that is indexed by time. Pandas has a lot of built-in functionality for working with time series data.
# Import datetime
from datetime import datetime
# Create a datetime object
datetime(year=2018, month=1, day=1)
# Create a datetime index
dates = pd.date_range('2018-01-01', periods=365, freq='D')
# Create a dataframe with a datetime index
df = pd.DataFrame({'col1': np.random.randn(len(dates))}, index=dates)
# Select a range of dates
df['2018-01-01':'2018-01-10']
# Select a single date
df['2018-01-01']
Categorical data is a special type of data that takes on a limited number of possible values. Pandas has a special data type for working with categorical data.
# Create a categorical variable
df['col1'] = df['col1'].astype('category')
# Create dummy variables
pd.get_dummies(df['col1'], prefix='col1')
# Create a dataframe with missing values
df = pd.DataFrame({'col1': [1, 2, np.nan], 'col2': [np.nan, 3, 4]})
# Drop rows with missing values
df.dropna()
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 1 | 2 | 3 |
# Drop columns with missing values
df.dropna(axis=1)
Output:
| | col1 |
| --- | ---- |
| 0 | 1 |
| 1 | 2 |
| 2 | |
# Fill missing values with 0
df.fillna(0)
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 0 |
| 1 | 2 | 3 |
| 2 | | 4 |
# Fill missing values in col1 with 0 and col2 with 1
df['col1'].fillna(0)
df['col2'].fillna(1)
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 1 |
| 1 | 2 | 3 |
| 2 | 0 | 4 |
# Fill missing values with the previous value
df.fillna(method='ffill')
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | |
| 1 | 2 | 3 |
| 2 | 2 | 4 |
# Fill missing values with the next value
df.fillna(method='bfill')
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3 |
| 1 | 2 | 3 |
| 2 | | 4 |
# Fill missing values with the mean of the column
df.fillna(df.mean())
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 3.5 |
| 1 | 2 | 3 |
| 2 | 1.5 | 4 |
# Find the number of missing values in each column
df.isnull().sum()
Output:
| col1 | 1 |
| col2 | 1 |
# Create a dataframe with 1000 rows and 100 columns
df = pd.DataFrame(np.random.randn(1000, 100))
# Select the first 10 rows
df.head(10)
# Select the last 10 rows
df.tail(10)
# Select the first 10 rows of the first 5 columns
df.iloc[:10, :5]
# Select values greater than 7 in col1
df[df['col1'] > 7]
# Select values greater than 7 in col1 and less than 5 in col2
df[(df['col1'] > 7) & (df['col2'] < 5)]
# Select values in col1 that are not in col2
df[~df['col1'].isin(df['col2'])]
Method chaining is a way to write code in a more concise way. It allows you to string together multiple methods in a single line of code.
# Create a dataframe
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
# Select the first 2 rows of col1 and replace missing values with 0
df['col1'].head(2).fillna(0)
Output:
| 0 | 1 |
| --- | --- |
| 1 | 2 |
Grouping and aggregating data is a common task in data analysis. Pandas makes it easy to group and aggregate data.
# Create a dataframe
df = pd.DataFrame({'col1': ['A', 'A', 'B', 'B'], 'col2': [1, 2, 3, 4], 'col3': [100, 200, 300, 400]})
# Group by col1 and find the mean of each group
df.groupby('col1').mean()
Output:
| col1 | col2 | col3 |
| ---- | ---- | ---- |
| A | 1.5 | 150 |
| B | 3.5 | 350 |
# Group by col1 and find the sum of each group
df.groupby('col1').sum()
Output:
| col1 | col2 | col3 |
| ---- | ---- | ---- |
| A | 3 | 300 |
| B | 7 | 700 |
# Group by col1 and find the max of each group
df.groupby('col1').max()
Output:
| col1 | col2 | col3 |
| ---- | ---- | ---- |
| A | 2 | 200 |
| B | 4 | 400 |
Pandas Gotchas are common mistakes that new users make when using Pandas. Here are some common gotchas to avoid.
# Create a dataframe
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
# Select the first row of col1
df['col1'][0]
Output:
1
# Select the first row of col1
df.loc[0, 'col1']
Output:
1
# Select the first row of col1
df.iloc[0, 0]
Output:
1
# Create a dataframe
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
# Create a new column as a function of existing columns
df['col3'] = df['col1'] + df['col2']
Output:
| | col1 | col2 | col3 |
| --- | ---- | ---- | ---- |
| 0 | 1 | 4 | 5 |
| 1 | 2 | 5 | 7 |
| 2 | 3 | 6 | 9 |
# Create a new column based on a conditional statement
df['col4'] = np.where(df['col1'] > 2, 'high', 'low')
Output:
| | col1 | col2 | col3 | col4 |
| --- | ---- | ---- | ---- | ---- |
| 0 | 1 | 4 | 5 | low |
| 1 | 2 | 5 | 7 | low |
| 2 | 3 | 6 | 9 | high |
# Create a dataframe
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
# Create a new row
df.loc[3] = [7, 8]
Output:
| | col1 | col2 |
| --- | ---- | ---- |
| 0 | 1 | 4 |
| 1 | 2 | 5 |
| 2 | 3 | 6 |
| 3 | 7 | 8 |
# Create a dataframe
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
# Rename columns
df.rename(columns={'col1': 'column1', 'col2': 'column2'}, inplace=True)
Output:
| | column1 | column2 |
| --- | ------- | ------- |
| 0 | 1 | 4 |
| 1 | 2 | 5 |
| 2 | 3 | 6 |
# Create a dataframe
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
# Export to csv
df.to_csv('data.csv', index=False)
# Export to excel
df.to_excel('data.xlsx', index=False)
# Export to json
df.to_json('data.json', orient='records')
# Export to pickle
df.to_pickle('data.pkl')
# Export to dictionary
df.to_dict('records')
# Export to clipboard
df.to_clipboard()