-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputing.jl
234 lines (181 loc) · 11.1 KB
/
computing.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2024 Ashwin. S. Nayak, Andrés Prieto, Daniel Fernández Comesaña
#
# This file is part of pressure-projections
#
# SPDX-License-Identifier: MIT
"""
Computation of the different post-processing pressure projections solution and measurement of their errors
from a displacement field, which is either obtained from a Raviart-Thomas discretization (implemented in Gridap)
or from piecewise polynomial interpolations on a triangular mesh
"""
# Load the packages
using Gridap
using Gridap.Fields
using Gridap.Geometry
# Load special function package (only required for the 2D simulations)
using SpecialFunctions
# Load the plotting packages
using GridapMakie, CairoMakie, FileIO, LaTeXStrings
# Load the meshing.jl file to use the generate_mesh function
include("projecting.jl")
# Compute the L^2-relative error in the entire computational domain
function L2_error(fh, fex, dΩ, xp)
error = fh - fex
return 100 * sqrt(abs(sum(∫(error ⋅ error)*dΩ)/sum(∫((fex ∘ xp) ⋅ (fex ∘ xp))*dΩ)))
end
# Compute the L^2-relative error in the entire computational domain
function L2_error_vector(fh, fex, dΩ, xp)
error = fh - fex
return 100 * sqrt(abs(sum(∫(error' ⋅ error)*dΩ)/sum(∫((fex ∘ xp)' ⋅ (fex ∘ xp))*dΩ)))
end
# Compute the energy-norm-relative error in the entire computational domain
function energy_error(fh, fex, dfh, dfex, dΩ, xp, k)
error = fh - fex
error_grad = dfh - dfex
return 100 * sqrt(abs(sum(∫(k^2*error ⋅ error + error_grad' ⋅ error_grad)*dΩ)/sum(∫(k^2*(fex ∘ xp) ⋅ (fex ∘ xp) + (dfex ∘ xp)' ⋅ (dfex ∘ xp))*dΩ)))
end
# Compute the energy-norm-relative error in the entire computational domain
function energy_error_vector(fh, fex, dfh, dfex, dΩ, xp, k)
error = fh - fex
error_grad = dfh - dfex
return 100 * sqrt(abs(sum(∫(k^2*error' ⋅ error + error_grad ⋅ error_grad)*dΩ)/sum(∫(k^2*(fex ∘ xp)' ⋅ (fex ∘ xp) + (dfex ∘ xp) ⋅ (dfex ∘ xp))*dΩ)))
end
# Compute all the projections of the pressure field using the displacement field from the Raviart-Thomas discretization
function compute_from_fem(k, N, orderFE, orderFE_postprocessing, exact_solution, boundary_data)
# Get the exact solution from the dictinoray
pex = exact_solution["ExactPressure"]
grad_pex = exact_solution["ExactGradientPressure"]
uex = exact_solution["ExactDisplacement"]
# Generate the mesh for a given mesh size
model = generate_mesh(N)
# Compute the solution of displacement-based formulation using first-order Raviart-Thomas discretization
uh = RT_solve(k, orderFE, model, boundary_data)
# Compute the solution of pressure-based formulation using Lagrange discretization
ph = CG_solve(k, orderFE_postprocessing, model, boundary_data)
# Compute the pressure projections
ph_L2_DG = L2_DG_projection(uh, orderFE_postprocessing, model)
ph_L2_CG = L2_CG_projection(uh, orderFE_postprocessing, model)
ph_H1 = H1_projection(k, uh, orderFE_postprocessing, model)
ph_H2 = H2_projection_DG(k, uh, orderFE_postprocessing, model, N)
# Define the measure for computing the error with high-oscillatory solutions
degree_ex = 16*orderFE_postprocessing # Quadrature degree
# Define the fluid domain
Ω = Triangulation(model) # Computational domain
dΩex = Measure(Ω, degree_ex)
xp = get_physical_coordinate(Ω)
# Compute the L^2-relative error in the entire computational domain
error_L2_u = L2_error_vector(uh, uex, dΩex, xp)
# Compute the energy-norm-relative error in the entire computational domain
error_energy_u = energy_error_vector(uh, uex, -divergence(uh), pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_L2_DG
error_L2_proj_DG = L2_error(ph_L2_DG, pex, dΩex, xp)
# Compute the H^1-relative error in the entire computational domain for ph_L2_DG
error_energy_proj_DG = energy_error(ph_L2_DG, pex, ∇(ph_L2_DG), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_L2_CG
error_L2_proj_CG = L2_error(ph_L2_CG, pex, dΩex, xp)
# Compute the H^1-relative error in the entire computational domain for ph_L2_CG
error_energy_proj_CG = energy_error(ph_L2_CG, pex, ∇(ph_L2_CG), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_H1
error_L2_proj_H1 = L2_error(ph_H1, pex, dΩex, xp)
# Compute the H1-relative error in the entire computational domain for ph_H1
error_energy_proj_H1 = energy_error(ph_H1, pex, ∇(ph_H1), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_H1
error_L2_proj_H2_DG = L2_error(ph_H2, pex, dΩex, xp)
# Compute the H1-relative error in the entire computational domain for ph_H1
error_energy_proj_H2_DG = energy_error(ph_H2, pex, ∇(ph_H2), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain
error_L2_p = L2_error(ph, pex, dΩex, xp)
# Compute the energy-norm-relative error in the entire computational domain
error_energy_p = energy_error(ph, pex, ∇(ph), grad_pex, dΩex, xp, k)
# # Write the results to a VTK file with fileneame "results_N.vtu" with N the mesh size
# writevtk(Ω,"./results/results_N=$(N)_order=$(orderFE).vtu", cellfields=["Re(uh)"=>real(uh), "Im(uh)"=>imag(uh),
# "Re(uex)"=>real(uex ∘ xp), "Im(uex)"=>imag(uex ∘ xp),
# "Re(ph)"=>real(ph), "Im(ph)"=>imag(ph),
# "Re(pex)"=>real(pex ∘ xp), "Im(pex)"=>imag(pex ∘ xp)])
return error_L2_u, error_energy_u, error_L2_p, error_energy_p, error_L2_proj_DG, error_energy_proj_DG, error_L2_proj_CG, error_energy_proj_CG, error_L2_proj_H1, error_energy_proj_H1, error_L2_proj_H2_DG, error_energy_proj_H2_DG
end
# Compute all the projections of the pressure field using the displacement field from the interpolation of the exact solution
function compute_from_exact(k, N, orderFE_postprocessing, exact_solution, plot_flag=false)
# Get the exact solution from the dictinoray
pex = exact_solution["ExactPressure"]
grad_pex = exact_solution["ExactGradientPressure"]
uex = exact_solution["ExactDisplacement"]
# Generate the mesh for a given mesh size
model = generate_mesh(N)
# Define the fluid domain
Ω = Triangulation(model) # Computational domain
xp = get_physical_coordinate(Ω)
# Compute the solution of displacement-based formulation using first-order Raviart-Thomas discretization
reffe = ReferenceFE(raviart_thomas, Float64, orderFE_postprocessing-1)
V_RT = TestFESpace(model, reffe, conformity=:Hdiv, vector_type=Vector{ComplexF64})
uh = interpolate_everywhere(uex, V_RT)
# Compute the solution of pressure-based formulation using Lagrange discretization
reffe = ReferenceFE(lagrangian, Float64, orderFE_postprocessing)
V_CG = TestFESpace(model, reffe, conformity=:H1, vector_type=Vector{ComplexF64})
ph = interpolate_everywhere(pex, V_CG)
# Compute the pressure projections from exact solution
ph_L2_DG = L2_DG_projection(uh, orderFE_postprocessing, model)
ph_L2_CG = L2_CG_projection(uh, orderFE_postprocessing, model)
ph_H1 = H1_projection(k, uh, orderFE_postprocessing, model)
ph_H2 = H2_projection_DG(k, uh, orderFE_postprocessing, model, N)
# Define the measure for computing the error with high-oscillatory solutions
degree_ex = 16*orderFE_postprocessing # Quadrature degree
# Define the fluid domain
Ω = Triangulation(model) # Computational domain
dΩex = Measure(Ω, degree_ex)
xp = get_physical_coordinate(Ω)
# Compute the L^2-relative error in the entire computational domain
error_L2_u = L2_error_vector(uh, uex, dΩex, xp)
# Compute the energy-norm-relative error in the entire computational domain
error_energy_u = energy_error_vector(uh, uex, -divergence(uh), pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_L2_DG
error_L2_proj_DG = L2_error(ph_L2_DG, pex, dΩex, xp)
# Compute the H^1-relative error in the entire computational domain for ph_L2_CG
error_energy_proj_DG = energy_error(ph_L2_DG, pex, ∇(ph_L2_DG), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_L2_CG
error_L2_proj_CG = L2_error(ph_L2_CG, pex, dΩex, xp)
# Compute the H^1-relative error in the entire computational domain for ph_L2_CG
error_energy_proj_CG = energy_error(ph_L2_CG, pex, ∇(ph_L2_CG), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_H1
error_L2_proj_H1 = L2_error(ph_H1, pex, dΩex, xp)
# Compute the H1-relative error in the entire computational domain for ph_H1
error_energy_proj_H1 = energy_error(ph_H1, pex, ∇(ph_H1), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain for ph_H1
error_L2_proj_H2_DG = L2_error(ph_H2, pex, dΩex, xp)
# Compute the H1-relative error in the entire computational domain for ph_H1
error_energy_proj_H2_DG = energy_error(ph_H2, pex, ∇(ph_H2), grad_pex, dΩex, xp, k)
# Compute the L^2-relative error in the entire computational domain
error_L2_p = L2_error(ph, pex, dΩex, xp)
# Compute the energy-norm-relative error in the entire computational domain
error_energy_p = energy_error(ph, pex, ∇(ph), grad_pex, dΩex, xp, k)
# Plot using GridapMakie some fields only if plot_flag is true
if plot_flag==true
# Plot mesh
fig, ax, plt = wireframe(Ω, color=:black, linewidth=1.0)
# Set x- and y-axis labels
ax.xlabel = L"x"
ax.ylabel = L"y"
# Axis equal
ax.aspect = DataAspect()
# Save the figure to pdf format with 300 dpi
save("./results/mesh_N=$(N).pdf", fig)
# Plot pressure field
fig , ax , plt = plot(Ω, real(pex ∘ xp))
# Set x- and y-axis labels
ax.xlabel = L"x"
ax.ylabel = L"y"
# Axis equal
ax.aspect = DataAspect()
# Colorbar with limits and fixed ticks
# cbar = Colorbar(fig[2,1], plt, label=L"\mathrm{Re}(p_{\mathrm{ex}})", vertical=false)
cbar = Colorbar(fig[1,2], plt, label=L"\mathrm{Re}(p_{\mathrm{ex}})")
# Save the figure to pdf format with 300 dpi
save("./results/plot_pex_N=$(N).pdf", fig)
end
# # Write the results to a VTK file with fileneame "results_N.vtu" with N the mesh size
# writevtk(Ω,"./results/results_N=$(N)_order=$(orderFE).vtu", cellfields=["Re(uh)"=>real(uh), "Im(uh)"=>imag(uh),
# "Re(uex)"=>real(uex ∘ xp), "Im(uex)"=>imag(uex ∘ xp),
# "Re(ph)"=>real(ph), "Im(ph)"=>imag(ph),
# "Re(pex)"=>real(pex ∘ xp), "Im(pex)"=>imag(pex ∘ xp)])
return error_L2_u, error_energy_u, error_L2_p, error_energy_p, error_L2_proj_DG, error_energy_proj_DG, error_L2_proj_CG, error_energy_proj_CG, error_L2_proj_H1, error_energy_proj_H1, error_L2_proj_H2_DG, error_energy_proj_H2_DG
end