forked from OPENAIRINTERFACE/openairinterface5g
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusrp_lib.cpp
1569 lines (1353 loc) · 56.7 KB
/
usrp_lib.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
*/
/** usrp_lib.cpp
*
* \author: HongliangXU : [email protected]
*/
#define _LARGEFILE_SOURCE
#define _FILE_OFFSET_BITS 64
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <uhd/version.hpp>
#if UHD_VERSION < 3110000
#include <uhd/utils/thread_priority.hpp>
#else
#include <uhd/utils/thread.hpp>
#endif
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/version.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread.hpp>
#include <boost/format.hpp>
#include <iostream>
#include <complex>
#include <fstream>
#include <cmath>
#include <time.h>
#include "common/utils/LOG/log.h"
#include "common_lib.h"
#include "assertions.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include <sys/resource.h>
#include "openair1/PHY/sse_intrin.h"
/** @addtogroup _USRP_PHY_RF_INTERFACE_
* @{
*/
extern int usrp_tx_thread;
typedef struct {
// --------------------------------
// variables for USRP configuration
// --------------------------------
//! USRP device pointer
uhd::usrp::multi_usrp::sptr usrp;
//create a send streamer and a receive streamer
//! USRP TX Stream
uhd::tx_streamer::sptr tx_stream;
//! USRP RX Stream
uhd::rx_streamer::sptr rx_stream;
//! USRP TX Metadata
uhd::tx_metadata_t tx_md;
//! USRP RX Metadata
uhd::rx_metadata_t rx_md;
//! Sampling rate
double sample_rate;
//! TX forward samples. We use usrp_time_offset to get this value
int tx_forward_nsamps; //166 for 20Mhz
//! gpio bank to use
char *gpio_bank;
// --------------------------------
// Debug and output control
// --------------------------------
int num_underflows;
int num_overflows;
int num_seq_errors;
int64_t tx_count;
int64_t rx_count;
int wait_for_first_pps;
int use_gps;
//int first_tx;
//int first_rx;
//! timestamp of RX packet
openair0_timestamp rx_timestamp;
} usrp_state_t;
//void print_notes(void)
//{
// Helpful notes
// std::cout << boost::format("**************************************Helpful Notes on Clock/PPS Selection**************************************\n");
// std::cout << boost::format("As you can see, the default 10 MHz Reference and 1 PPS signals are now from the GPSDO.\n");
// std::cout << boost::format("If you would like to use the internal reference(TCXO) in other applications, you must configure that explicitly.\n");
// std::cout << boost::format("You can no longer select the external SMAs for 10 MHz or 1 PPS signaling.\n");
// std::cout << boost::format("****************************************************************************************************************\n");
//}
int check_ref_locked(usrp_state_t *s,size_t mboard) {
std::vector<std::string> sensor_names = s->usrp->get_mboard_sensor_names(mboard);
bool ref_locked = false;
if(std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end()) {
std::cout << "Waiting for reference lock..." << std::flush;
for (int i = 0; i < 30 and not ref_locked; i++) {
ref_locked = s->usrp->get_mboard_sensor("ref_locked", mboard).to_bool();
if (not ref_locked) {
std::cout << "." << std::flush;
boost::this_thread::sleep(boost::posix_time::seconds(1));
}
}
if(ref_locked) {
std::cout << "LOCKED" << std::endl;
} else {
std::cout << "FAILED" << std::endl;
}
} else {
std::cout << boost::format("ref_locked sensor not present on this board.\n");
}
return ref_locked;
}
static int sync_to_gps(openair0_device *device) {
//uhd::set_thread_priority_safe();
//std::string args;
//Set up program options
//po::options_description desc("Allowed options");
//desc.add_options()
//("help", "help message")
//("args", po::value<std::string>(&args)->default_value(""), "USRP device arguments")
//;
//po::variables_map vm;
//po::store(po::parse_command_line(argc, argv, desc), vm);
//po::notify(vm);
//Print the help message
//if (vm.count("help"))
//{
// std::cout << boost::format("Synchronize USRP to GPS %s") % desc << std::endl;
// return EXIT_FAILURE;
//}
//Create a USRP device
//std::cout << boost::format("\nCreating the USRP device with: %s...\n") % args;
//uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//std::cout << boost::format("Using Device: %s\n") % usrp->get_pp_string();
usrp_state_t *s = (usrp_state_t *)device->priv;
try {
size_t num_mboards = s->usrp->get_num_mboards();
size_t num_gps_locked = 0;
for (size_t mboard = 0; mboard < num_mboards; mboard++) {
std::cout << "Synchronizing mboard " << mboard << ": " << s->usrp->get_mboard_name(mboard) << std::endl;
bool ref_locked = check_ref_locked(s,mboard);
if (ref_locked) {
std::cout << boost::format("Ref Locked\n");
} else {
std::cout << "Failed to lock to GPSDO 10 MHz Reference. Exiting." << std::endl;
exit(EXIT_FAILURE);
}
//Wait for GPS lock
bool gps_locked = s->usrp->get_mboard_sensor("gps_locked", mboard).to_bool();
if(gps_locked) {
num_gps_locked++;
std::cout << boost::format("GPS Locked\n");
} else {
LOG_W(HW,"WARNING: GPS not locked - time will not be accurate until locked\n");
}
//Set to GPS time
uhd::time_spec_t gps_time = uhd::time_spec_t(time_t(s->usrp->get_mboard_sensor("gps_time", mboard).to_int()));
s->usrp->set_time_next_pps(gps_time+1.0, mboard);
//s->usrp->set_time_next_pps(uhd::time_spec_t(0.0));
//Wait for it to apply
//The wait is 2 seconds because N-Series has a known issue where
//the time at the last PPS does not properly update at the PPS edge
//when the time is actually set.
boost::this_thread::sleep(boost::posix_time::seconds(2));
//Check times
gps_time = uhd::time_spec_t(time_t(s->usrp->get_mboard_sensor("gps_time", mboard).to_int()));
uhd::time_spec_t time_last_pps = s->usrp->get_time_last_pps(mboard);
std::cout << "USRP time: " << (boost::format("%0.9f") % time_last_pps.get_real_secs()) << std::endl;
std::cout << "GPSDO time: " << (boost::format("%0.9f") % gps_time.get_real_secs()) << std::endl;
if (gps_time.get_real_secs() == time_last_pps.get_real_secs())
std::cout << std::endl << "SUCCESS: USRP time synchronized to GPS time" << std::endl << std::endl;
else
std::cerr << std::endl << "ERROR: Failed to synchronize USRP time to GPS time" << std::endl << std::endl;
}
if (num_gps_locked == num_mboards and num_mboards > 1) {
//Check to see if all USRP times are aligned
//First, wait for PPS.
uhd::time_spec_t time_last_pps = s->usrp->get_time_last_pps();
while (time_last_pps == s->usrp->get_time_last_pps()) {
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
//Sleep a little to make sure all devices have seen a PPS edge
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
//Compare times across all mboards
bool all_matched = true;
uhd::time_spec_t mboard0_time = s->usrp->get_time_last_pps(0);
for (size_t mboard = 1; mboard < num_mboards; mboard++) {
uhd::time_spec_t mboard_time = s->usrp->get_time_last_pps(mboard);
if (mboard_time != mboard0_time) {
all_matched = false;
std::cerr << (boost::format("ERROR: Times are not aligned: USRP 0=%0.9f, USRP %d=%0.9f")
% mboard0_time.get_real_secs()
% mboard
% mboard_time.get_real_secs()) << std::endl;
}
}
if (all_matched) {
std::cout << "SUCCESS: USRP times aligned" << std::endl << std::endl;
} else {
std::cout << "ERROR: USRP times are not aligned" << std::endl << std::endl;
}
}
} catch (std::exception &e) {
std::cout << boost::format("\nError: %s") % e.what();
std::cout << boost::format("This could mean that you have not installed the GPSDO correctly.\n\n");
std::cout << boost::format("Visit one of these pages if the problem persists:\n");
std::cout << boost::format(" * N2X0/E1X0: http://files.ettus.com/manual/page_gpsdo.html");
std::cout << boost::format(" * X3X0: http://files.ettus.com/manual/page_gpsdo_x3x0.html\n\n");
std::cout << boost::format(" * E3X0: http://files.ettus.com/manual/page_usrp_e3x0.html#e3x0_hw_gps\n\n");
exit(EXIT_FAILURE);
}
return EXIT_SUCCESS;
}
#define ATR_MASK 0x7f //pins controlled by ATR
#define ATR_RX 0x50 //data[4] and data[6]
#define ATR_XX 0x20 //data[5]
#define MAN_MASK ATR_MASK ^ 0xFFF // manually controlled pins
static void trx_usrp_start_interdigital_gpio(openair0_device *device, usrp_state_t *s)
{
AssertFatal(device->type == USRP_X400_DEV,
"interdigital frontend device for beam management can only be used together with an X400\n");
// set data direction register (DDR) to output
s->usrp->set_gpio_attr(s->gpio_bank, "DDR", 0xfff, 0xfff);
// set lower GPIO#1 to be controlled automatically by ATR (the rest bits are controlled manually)
s->usrp->set_gpio_attr(s->gpio_bank, "CTRL", (1 << 1), (1 << 1));
// set GPIO1 (Tx/Rx1) to 1 for MHU1 for transmistting
s->usrp->set_gpio_attr(s->gpio_bank, "ATR_XX", (1 << 1), (1 << 1));
// set GPIO4 (ID0) to 1 and GPIO2 (TX/RX2) &GPIO3 (ID1) to 0
s->usrp->set_gpio_attr(s->gpio_bank, "OUT", (1 << 4), 0x1c);
}
static void trx_usrp_start_generic_gpio(openair0_device *device, usrp_state_t *s)
{
// setup GPIO for TDD, GPIO(4) = ATR_RX
// set data direction register (DDR) to output
s->usrp->set_gpio_attr(s->gpio_bank, "DDR", 0xfff, 0xfff);
// set bits to be controlled automatically by ATR
s->usrp->set_gpio_attr(s->gpio_bank, "CTRL", ATR_MASK, 0xfff);
// set bits to 1 when the radio is only receiving (ATR_RX)
s->usrp->set_gpio_attr(s->gpio_bank, "ATR_RX", ATR_RX, ATR_MASK);
// set bits to 1 when the radio is transmitting and receiveing (ATR_XX)
// (we use full duplex here, because our RX is on all the time - this might need to change later)
s->usrp->set_gpio_attr(s->gpio_bank, "ATR_XX", ATR_XX, ATR_MASK);
// set all other pins to manual
s->usrp->set_gpio_attr(s->gpio_bank, "OUT", MAN_MASK, 0xfff);
}
/*! \brief Called to start the USRP transceiver. Return 0 if OK, < 0 if error
@param device pointer to the device structure specific to the RF hardware target
*/
static int trx_usrp_start(openair0_device *device) {
usrp_state_t *s = (usrp_state_t *)device->priv;
s->gpio_bank = (char *) "FP0"; //good for B210, X310 and N310
#if UHD_VERSION>4000000
if (device->type == USRP_X400_DEV) {
// Set every pin on GPIO0 to be controlled by DB0_RF0
std::vector<std::string> sxx{12, "DB0_RF0"};
s->gpio_bank = (char *) "GPIO0";
s->usrp->set_gpio_src(s->gpio_bank, sxx);
}
#endif
switch (device->openair0_cfg->gpio_controller) {
case RU_GPIO_CONTROL_NONE:
break;
case RU_GPIO_CONTROL_GENERIC:
trx_usrp_start_generic_gpio(device, s);
break;
case RU_GPIO_CONTROL_INTERDIGITAL:
trx_usrp_start_interdigital_gpio(device, s);
break;
default:
AssertFatal(false, "illegal GPIO controller %d\n", device->openair0_cfg->gpio_controller);
}
s->wait_for_first_pps = 1;
s->rx_count = 0;
s->tx_count = 0;
//s->first_tx = 1;
//s->first_rx = 1;
s->rx_timestamp = 0;
//wait for next pps
uhd::time_spec_t last_pps = s->usrp->get_time_last_pps();
uhd::time_spec_t current_pps = s->usrp->get_time_last_pps();
while(current_pps == last_pps) {
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
current_pps = s->usrp->get_time_last_pps();
}
LOG_I(HW,"current pps at %f, starting streaming at %f\n",current_pps.get_real_secs(),current_pps.get_real_secs()+1.0);
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
cmd.time_spec = uhd::time_spec_t(current_pps+1.0);
cmd.stream_now = false; // start at constant delay
s->rx_stream->issue_stream_cmd(cmd);
return 0;
}
static void trx_usrp_send_end_of_burst(usrp_state_t *s)
{
// if last packet sent was end of burst no need to do anything. otherwise send end of burst packet
if (s->tx_md.end_of_burst)
return;
s->tx_md.end_of_burst = true;
s->tx_md.start_of_burst = false;
s->tx_md.has_time_spec = false;
s->tx_stream->send("", 0, s->tx_md);
}
static void trx_usrp_finish_rx(usrp_state_t *s)
{
/* finish rx by sending STREAM_MODE_STOP_CONTINUOUS */
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
s->rx_stream->issue_stream_cmd(cmd);
/* collect all remaining samples (not sure if needed) */
size_t samples;
uint8_t buf[1024];
std::vector<void *> buff_ptrs;
for (size_t i = 0; i < s->usrp->get_rx_num_channels(); i++) buff_ptrs.push_back(buf);
do {
samples = s->rx_stream->recv(buff_ptrs, sizeof(buf)/4, s->rx_md);
} while (samples > 0);
}
static void trx_usrp_write_reset(openair0_thread_t *wt);
/*! \brief Terminate operation of the USRP transceiver -- free all associated resources
* \param device the hardware to use
*/
static void trx_usrp_end(openair0_device *device) {
if (device == NULL)
return;
usrp_state_t *s = (usrp_state_t *)device->priv;
AssertFatal(s != NULL, "%s() called on uninitialized USRP\n", __func__);
iqrecorder_end(device);
LOG_I(HW, "releasing USRP\n");
if (usrp_tx_thread != 0)
trx_usrp_write_reset(&device->write_thread);
/* finish tx and rx */
trx_usrp_send_end_of_burst(s);
trx_usrp_finish_rx(s);
/* set tx_stream, rx_stream, and usrp to NULL to clear/free them */
s->tx_stream = NULL;
s->rx_stream = NULL;
s->usrp = NULL;
free(s);
device->priv = NULL;
device->trx_start_func = NULL;
device->trx_get_stats_func = NULL;
device->trx_reset_stats_func = NULL;
device->trx_end_func = NULL;
device->trx_stop_func = NULL;
device->trx_set_freq_func = NULL;
device->trx_set_gains_func = NULL;
device->trx_write_init = NULL;
}
/*! \brief Called to send samples to the USRP RF target
@param device pointer to the device structure specific to the RF hardware target
@param timestamp The timestamp at which the first sample MUST be sent
@param buff Buffer which holds the samples
@param nsamps number of samples to be sent
@param antenna_id index of the antenna if the device has multiple antennas
@param flags flags must be set to true if timestamp parameter needs to be applied
*/
static int trx_usrp_write(openair0_device *device,
openair0_timestamp timestamp,
void **buff,
int nsamps,
int cc,
int flags) {
int ret=0;
usrp_state_t *s = (usrp_state_t *)device->priv;
timestamp -= device->openair0_cfg->command_line_sample_advance + device->openair0_cfg->tx_sample_advance;
int nsamps2; // aligned to upper 32 or 16 byte boundary
radio_tx_burst_flag_t flags_burst = (radio_tx_burst_flag_t) (flags & 0xf);
radio_tx_gpio_flag_t flags_gpio = (radio_tx_gpio_flag_t) ((flags >> 4) & 0x1fff);
int end;
openair0_thread_t *write_thread = &device->write_thread;
openair0_write_package_t *write_package = write_thread->write_package;
AssertFatal( MAX_WRITE_THREAD_BUFFER_SIZE >= cc,"Do not support more than %d cc number\n", MAX_WRITE_THREAD_BUFFER_SIZE);
bool first_packet_state=false,last_packet_state=false;
if (flags_burst == TX_BURST_START) {
// s->tx_md.start_of_burst = true;
// s->tx_md.end_of_burst = false;
first_packet_state = true;
last_packet_state = false;
} else if (flags_burst == TX_BURST_END) {
//s->tx_md.start_of_burst = false;
//s->tx_md.end_of_burst = true;
first_packet_state = false;
last_packet_state = true;
} else if (flags_burst == TX_BURST_START_AND_END) {
// s->tx_md.start_of_burst = true;
// s->tx_md.end_of_burst = true;
first_packet_state = true;
last_packet_state = true;
} else if (flags_burst == TX_BURST_MIDDLE) {
// s->tx_md.start_of_burst = false;
// s->tx_md.end_of_burst = false;
first_packet_state = false;
last_packet_state = false;
}
else if (flags_burst==10) { // fail safe mode
// s->tx_md.has_time_spec = false;
// s->tx_md.start_of_burst = false;
// s->tx_md.end_of_burst = true;
first_packet_state = false;
last_packet_state = true;
}
if (usrp_tx_thread == 0) {
nsamps2 = (nsamps+7)>>3;
simde__m256i buff_tx[cc < 2 ? 2 : cc][nsamps2];
// bring RX data into 12 LSBs for softmodem RX
for (int i = 0; i < cc; i++) {
for (int j = 0; j < nsamps2; j++) {
if ((((uintptr_t)buff[i]) & 0x1F) == 0) {
buff_tx[i][j] = simde_mm256_slli_epi16(((simde__m256i *)buff[i])[j], 4);
} else {
simde__m256i tmp = simde_mm256_loadu_si256(((simde__m256i *)buff[i]) + j);
buff_tx[i][j] = simde_mm256_slli_epi16(tmp, 4);
}
}
}
s->tx_md.has_time_spec = true;
s->tx_md.start_of_burst = (s->tx_count==0) ? true : first_packet_state;
s->tx_md.end_of_burst = last_packet_state;
s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
s->tx_count++;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_BEAM_SWITCHING_GPIO,1);
// bit 13 enables gpio
if ((flags_gpio & TX_GPIO_CHANGE) != 0) {
// push GPIO bits
s->usrp->set_command_time(s->tx_md.time_spec);
s->usrp->set_gpio_attr(s->gpio_bank, "OUT", flags_gpio, MAN_MASK);
s->usrp->clear_command_time();
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_BEAM_SWITCHING_GPIO,0);
if (cc>1) {
std::vector<void *> buff_ptrs;
for (int i=0; i<cc; i++)
buff_ptrs.push_back(&(((int16_t *)buff_tx[i])[0]));
ret = (int)s->tx_stream->send(buff_ptrs, nsamps, s->tx_md);
}
else {
ret = (int)s->tx_stream->send(&(((int16_t *)buff_tx[0])[0]), nsamps, s->tx_md);
}
if (ret != nsamps) LOG_E(HW,"[xmit] tx samples %d != %d\n",ret,nsamps);
return ret;
} else {
pthread_mutex_lock(&write_thread->mutex_write);
if (write_thread->count_write >= MAX_WRITE_THREAD_PACKAGE) {
LOG_W(HW,
"Buffer overflow, count_write = %d, start = %d end = %d, resetting write package\n",
write_thread->count_write,
write_thread->start,
write_thread->end);
write_thread->end = write_thread->start;
write_thread->count_write = 0;
}
end = write_thread->end;
write_package[end].timestamp = timestamp;
write_package[end].nsamps = nsamps;
write_package[end].cc = cc;
write_package[end].first_packet = first_packet_state;
write_package[end].last_packet = last_packet_state;
write_package[end].flags_gpio = flags_gpio;
for (int i = 0; i < cc; i++)
write_package[end].buff[i] = buff[i];
write_thread->count_write++;
write_thread->end = (write_thread->end + 1) % MAX_WRITE_THREAD_PACKAGE;
LOG_D(HW, "Signaling TX TS %llu\n", (unsigned long long)timestamp);
pthread_cond_signal(&write_thread->cond_write);
pthread_mutex_unlock(&write_thread->mutex_write);
return 0;
}
}
//-----------------------start--------------------------
/*! \brief Called to send samples to the USRP RF target
@param device pointer to the device structure specific to the RF hardware target
@param timestamp The timestamp at which the first sample MUST be sent
@param buff Buffer which holds the samples
@param nsamps number of samples to be sent
@param antenna_id index of the antenna if the device has multiple antennas
@param flags flags must be set to true if timestamp parameter needs to be applied
*/
void *trx_usrp_write_thread(void * arg){
int ret=0;
openair0_device *device=(openair0_device *)arg;
openair0_thread_t *write_thread = &device->write_thread;
openair0_write_package_t *write_package = write_thread->write_package;
usrp_state_t *s;
int nsamps2; // aligned to upper 32 or 16 byte boundary
int start;
openair0_timestamp timestamp;
void **buff;
int nsamps;
int cc;
signed char first_packet;
signed char last_packet;
int flags_gpio;
printf("trx_usrp_write_thread started on cpu %d\n",sched_getcpu());
while(1){
pthread_mutex_lock(&write_thread->mutex_write);
while (write_thread->count_write == 0) {
pthread_cond_wait(&write_thread->cond_write,&write_thread->mutex_write); // this unlocks mutex_rxtx while waiting and then locks it again
}
if (write_thread->write_thread_exit)
break;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE_THREAD, 1 );
s = (usrp_state_t *)device->priv;
start = write_thread->start;
timestamp = write_package[start].timestamp;
buff = write_package[start].buff;
nsamps = write_package[start].nsamps;
cc = write_package[start].cc;
first_packet = write_package[start].first_packet;
last_packet = write_package[start].last_packet;
flags_gpio = write_package[start].flags_gpio;
write_thread->start = (write_thread->start + 1)% MAX_WRITE_THREAD_PACKAGE;
write_thread->count_write--;
pthread_mutex_unlock(&write_thread->mutex_write);
/*if(write_thread->count_write != 0){
LOG_W(HW,"count write = %d, start = %d, end = %d\n", write_thread->count_write, write_thread->start, write_thread->end);
}*/
nsamps2 = (nsamps+7)>>3;
simde__m256i buff_tx[cc < 2 ? 2 : cc][nsamps2];
// bring RX data into 12 LSBs for softmodem RX
for (int i = 0; i < cc; i++) {
for (int j = 0; j < nsamps2; j++) {
if ((((uintptr_t) buff[i])&0x1F)==0) {
buff_tx[i][j] = simde_mm256_slli_epi16(((simde__m256i *)buff[i])[j], 4);
}
else
{
simde__m256i tmp = simde_mm256_loadu_si256(((simde__m256i *)buff[i]) + j);
buff_tx[i][j] = simde_mm256_slli_epi16(tmp,4);
}
}
}
s->tx_md.has_time_spec = true;
s->tx_md.start_of_burst = (s->tx_count==0) ? true : first_packet;
s->tx_md.end_of_burst = last_packet;
s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
LOG_D(PHY,"usrp_tx_write: tx_count %llu SoB %d, EoB %d, TS %llu\n",(unsigned long long)s->tx_count,s->tx_md.start_of_burst,s->tx_md.end_of_burst,(unsigned long long)timestamp);
s->tx_count++;
// bit 3 enables gpio (for backward compatibility)
if (flags_gpio&0x1000) {
// push GPIO bits
s->usrp->set_command_time(s->tx_md.time_spec);
s->usrp->set_gpio_attr(s->gpio_bank, "OUT", flags_gpio, MAN_MASK);
s->usrp->clear_command_time();
}
if (cc>1) {
std::vector<void *> buff_ptrs;
for (int i=0; i<cc; i++)
buff_ptrs.push_back(&(((int16_t *)buff_tx[i])[0]));
ret = (int)s->tx_stream->send(buff_ptrs, nsamps, s->tx_md);
}
else {
ret = (int)s->tx_stream->send(&(((int16_t *)buff_tx[0])[0]), nsamps, s->tx_md);
}
T(T_USRP_TX_ANT0, T_INT(timestamp), T_BUFFER(buff_tx[0], nsamps*4));
if (ret != nsamps) LOG_E(HW,"[xmit] tx samples %d != %d\n",ret,nsamps);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_USRP_SEND_RETURN, ret );
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE_THREAD, 0 );
}
return NULL;
}
int trx_usrp_write_init(openair0_device *device){
//uhd::set_thread_priority_safe(1.0);
openair0_thread_t *write_thread = &device->write_thread;
printf("initializing tx write thread\n");
write_thread->start = 0;
write_thread->end = 0;
write_thread->count_write = 0;
write_thread->write_thread_exit = false;
printf("end of tx write thread\n");
pthread_mutex_init(&write_thread->mutex_write, NULL);
pthread_cond_init(&write_thread->cond_write, NULL);
threadCreate(&write_thread->pthread_write,
trx_usrp_write_thread,
(void *)device,
(char*)"trx_usrp_write_thread",
-1,
OAI_PRIORITY_RT_MAX);
return(0);
}
static void trx_usrp_write_reset(openair0_thread_t *wt) {
pthread_mutex_lock(&wt->mutex_write);
wt->count_write = 1;
wt->write_thread_exit = true;
pthread_cond_signal(&wt->cond_write);
pthread_mutex_unlock(&wt->mutex_write);
void *retval = NULL;
pthread_join(wt->pthread_write, &retval);
LOG_I(HW, "stopped USRP write thread\n");
}
//---------------------end-------------------------
/*! \brief Receive samples from hardware.
* Read \ref nsamps samples from each channel to buffers. buff[0] is the array for
* the first channel. *ptimestamp is the time at which the first sample
* was received.
* \param device the hardware to use
* \param[out] ptimestamp the time at which the first sample was received.
* \param[out] buff An array of pointers to buffers for received samples. The buffers must be large enough to hold the number of samples \ref nsamps.
* \param nsamps Number of samples. One sample is 2 byte I + 2 byte Q => 4 byte.
* \param antenna_id Index of antenna for which to receive samples
* \returns the number of sample read
*/
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc) {
usrp_state_t *s = (usrp_state_t *)device->priv;
int samples_received=0;
int nsamps2; // aligned to upper 32 or 16 byte boundary
nsamps2 = (nsamps+7)>>3;
simde__m256i buff_tmp[cc < 2 ? 2 : cc][nsamps2];
static int read_count = 0;
int rxshift;
switch (device->type) {
case USRP_B200_DEV:
rxshift=4;
break;
case USRP_X300_DEV:
case USRP_N300_DEV:
case USRP_X400_DEV:
rxshift=2;
break;
default:
AssertFatal(1==0,"Shouldn't be here\n");
}
samples_received=0;
while (samples_received != nsamps) {
if (cc>1) {
// receive multiple channels (e.g. RF A and RF B)
std::vector<void *> buff_ptrs;
for (int i=0; i<cc; i++) buff_ptrs.push_back(buff_tmp[i]+samples_received);
samples_received += s->rx_stream->recv(buff_ptrs, nsamps-samples_received, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received += s->rx_stream->recv((void*)((int32_t*)buff_tmp[0]+samples_received),
nsamps-samples_received, s->rx_md);
}
if ((s->wait_for_first_pps == 0) && (s->rx_md.error_code!=uhd::rx_metadata_t::ERROR_CODE_NONE))
break;
if ((s->wait_for_first_pps == 1) && (samples_received != nsamps)) {
printf("sleep...\n"); //usleep(100);
}
}
if (samples_received == nsamps) s->wait_for_first_pps=0;
// bring RX data into 12 LSBs for softmodem RX
for (int i=0; i<cc; i++) {
for (int j = 0; j < nsamps2; j++) {
// FK: in some cases the buffer might not be 32 byte aligned, so we cannot use avx2
if ((((uintptr_t) buff[i])&0x1F)==0) {
((simde__m256i *)buff[i])[j] = simde_mm256_srai_epi16(buff_tmp[i][j], rxshift);
} else {
simde__m256i tmp = simde_mm256_srai_epi16(buff_tmp[i][j], rxshift);
simde_mm256_storeu_si256(((simde__m256i *)buff[i]) + j, tmp);
}
}
}
if (samples_received < nsamps) {
LOG_E(HW,"[recv] received %d samples out of %d\n",samples_received,nsamps);
}
if ( s->rx_md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE)
LOG_E(HW, "%s\n", s->rx_md.to_pp_string(true).c_str());
s->rx_count += nsamps;
s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
*ptimestamp = s->rx_timestamp;
T(T_USRP_RX_ANT0, T_INT(s->rx_timestamp), T_BUFFER(buff[0], samples_received*4));
recplay_state_t *recPlay=device->recplay_state;
if (device->openair0_cfg->recplay_mode == RECPLAY_RECORDMODE) { // record mode
// Copy subframes to memory (later dump on a file)
// The number of read samples might differ from BELL_LABS_IQ_BYTES_PER_SF
// The number of read samples is always stored in nbBytes but the record is always of BELL_LABS_IQ_BYTES_PER_SF size
if (recPlay->nbSamplesBlocks <= device->openair0_cfg->recplay_conf->u_sf_max &&
recPlay->maxSizeBytes >= (recPlay->currentPtr-(uint8_t *)recPlay->ms_sample) +
sizeof(iqrec_t) + BELL_LABS_IQ_BYTES_PER_SF) {
iqrec_t *hdr=(iqrec_t *)recPlay->currentPtr;
struct timespec trec;
(void) clock_gettime(CLOCK_REALTIME, &trec);
hdr->header = BELL_LABS_IQ_HEADER;
hdr->ts = *ptimestamp;
hdr->nbBytes=nsamps*4; // real number of samples bytes
hdr->tv_sec = trec.tv_sec; // record secs
hdr->tv_usec = trec.tv_nsec/1000; // record µsecs
memcpy(hdr+1, buff[0], nsamps*4);
recPlay->currentPtr+=sizeof(iqrec_t)+BELL_LABS_IQ_BYTES_PER_SF; // record size is constant (BELL_LABS_IQ_BYTES_PER_SF)
recPlay->nbSamplesBlocks++;
LOG_D(HW,"recorded %d samples, for TS %lu, shift in buffer %ld nbBytes %d nbSamplesBlocks %d\n", nsamps, hdr->ts, recPlay->currentPtr-(uint8_t *)recPlay->ms_sample, (int)hdr->nbBytes, (int)recPlay->nbSamplesBlocks);
} else
exit_function(__FILE__, __FUNCTION__, __LINE__, "Recording reaches max iq limit\n", OAI_EXIT_NORMAL);
}
read_count++;
LOG_D(HW,"usrp_lib: returning %d samples at ts %lu read_count %d\n", samples_received, *ptimestamp, read_count);
return samples_received;
}
/*! \brief Compares two variables within precision
* \param a first variable
* \param b second variable
*/
static bool is_equal(double a, double b) {
return std::fabs(a-b) < std::numeric_limits<double>::epsilon();
}
void *freq_thread(void *arg) {
openair0_device *device=(openair0_device *)arg;
usrp_state_t *s = (usrp_state_t *)device->priv;
uhd::tune_request_t tx_tune_req(device->openair0_cfg[0].tx_freq[0],
device->openair0_cfg[0].tune_offset);
uhd::tune_request_t rx_tune_req(device->openair0_cfg[0].rx_freq[0],
device->openair0_cfg[0].tune_offset);
s->usrp->set_tx_freq(tx_tune_req);
s->usrp->set_rx_freq(rx_tune_req);
return NULL;
}
/*! \brief Set frequencies (TX/RX). Spawns a thread to handle the frequency change to not block the calling thread
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
* \param dummy dummy variable not used
* \returns 0 in success
*/
int trx_usrp_set_freq(openair0_device *device, openair0_config_t *openair0_cfg)
{
usrp_state_t *s = (usrp_state_t *)device->priv;
printf("Setting USRP TX Freq %f, RX Freq %f, tune_offset: %f\n", openair0_cfg[0].tx_freq[0], openair0_cfg[0].rx_freq[0], openair0_cfg[0].tune_offset);
uhd::tune_request_t tx_tune_req(openair0_cfg[0].tx_freq[0], openair0_cfg[0].tune_offset);
uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0], openair0_cfg[0].tune_offset);
s->usrp->set_tx_freq(tx_tune_req);
s->usrp->set_rx_freq(rx_tune_req);
return(0);
}
/*! \brief Set RX frequencies
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
* \returns 0 in success
*/
int openair0_set_rx_frequencies(openair0_device *device, openair0_config_t *openair0_cfg) {
usrp_state_t *s = (usrp_state_t *)device->priv;
uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0], openair0_cfg[0].tune_offset);
printf("In openair0_set_rx_frequencies, freq: %f, tune offset: %f\n",
openair0_cfg[0].rx_freq[0], openair0_cfg[0].tune_offset);
//rx_tune_req.rf_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
//rx_tune_req.rf_freq = openair0_cfg[0].rx_freq[0];
s->usrp->set_rx_freq(rx_tune_req);
return(0);
}
/*! \brief Set Gains (TX/RX)
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
* \returns 0 in success
*/
int trx_usrp_set_gains(openair0_device *device,
openair0_config_t *openair0_cfg) {
usrp_state_t *s = (usrp_state_t *)device->priv;
::uhd::gain_range_t gain_range_tx = s->usrp->get_tx_gain_range(0);
s->usrp->set_tx_gain(gain_range_tx.stop()-openair0_cfg[0].tx_gain[0]);
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
LOG_E(HW,"RX Gain 0 too high, reduce by %f dB\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
int gain_diff = gain_range.stop() - (openair0_cfg[0].rx_gain[0] - openair0_cfg[0].rx_gain_offset[0]);
return gain_diff;
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
LOG_I(HW,"Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],
openair0_cfg[0].rx_gain[0],gain_range.stop());
return(0);
}
/*! \brief Stop USRP
* \param card refers to the hardware index to use
*/
int trx_usrp_stop(openair0_device *device) {
return(0);
}
/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210[] = {
{3500000000.0,44.0},
{2660000000.0,49.0},
{2300000000.0,50.0},
{1880000000.0,53.0},
{816000000.0,58.0},
{-1,0}
};
/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210_38[] = {
{3500000000.0,44.0},
{2660000000.0,49.8},
{2300000000.0,51.0},
{1880000000.0,53.0},
{816000000.0,57.0},
{-1,0}
};
/*! \brief USRPx310 RX calibration table */
rx_gain_calib_table_t calib_table_x310[] = {
{3500000000.0,77.0},
{2660000000.0,81.0},
{2300000000.0,81.0},
{1880000000.0,82.0},
{816000000.0,85.0},
{-1,0}
};
/*! \brief USRPn3xf RX calibration table */
rx_gain_calib_table_t calib_table_n310[] = {
{3500000000.0,0.0},
{2660000000.0,0.0},
{2300000000.0,0.0},
{1880000000.0,0.0},
{816000000.0, 0.0},
{-1,0}
};
/*! \brief Empty RX calibration table */
rx_gain_calib_table_t calib_table_none[] = {
{3500000000.0,0.0},
{2660000000.0,0.0},
{2300000000.0,0.0},
{1880000000.0,0.0},
{816000000.0, 0.0},
{-1,0}
};
/*! \brief Set RX gain offset
* \param openair0_cfg RF frontend parameters set by application
* \param chain_index RF chain to apply settings to
* \returns 0 in success
*/
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_gain_adjust) {
int i=0;
// loop through calibration table to find best adjustment factor for RX frequency
double min_diff = 6e9,diff,gain_adj=0.0;
if (bw_gain_adjust==1) {
switch ((int)openair0_cfg[0].sample_rate) {
case 46080000:
break;
case 30720000:
break;
case 23040000:
gain_adj=1.25;
break;
case 15360000:
gain_adj=3.0;
break;
case 7680000:
gain_adj=6.0;
break;
case 3840000:
gain_adj=9.0;
break;
case 1920000:
gain_adj=12.0;
break;
default:
LOG_E(HW,"unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
//exit(-1);
break;
}
}
while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
LOG_I(HW,"cal %d: freq %f, offset %f, diff %f\n",
i,
openair0_cfg->rx_gain_calib_table[i].freq,
openair0_cfg->rx_gain_calib_table[i].offset,diff);
if (min_diff > diff) {
min_diff = diff;
openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset+gain_adj;
}