forked from eurecom-asp/RawGAT-ST-antispoofing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
273 lines (199 loc) · 9.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import sys
import os
import data_utils
import numpy as np
from torch import Tensor
from torch.utils.data import DataLoader
from torchvision import transforms
import yaml
import torch
from torch import nn
from model import RawGAT_ST # In main model script we used our best RawGAT-ST-mul model. To use other models you need to call revelant model scripts from RawGAT_models folder
from tensorboardX import SummaryWriter
from core_scripts.startup_config import set_random_seed
def pad(x, max_len=64600):
x_len = x.shape[0]
if x_len >= max_len:
return x[:max_len]
# need to pad
num_repeats = int(max_len / x_len)+1
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
return padded_x
def evaluate_accuracy(data_loader, model, device):
val_loss = 0.0
num_total = 0.0
model.eval()
weight = torch.FloatTensor([0.1, 0.9]).to(device)
criterion = nn.CrossEntropyLoss(weight=weight)
for batch_x, batch_y, batch_meta in data_loader:
batch_size = batch_x.size(0)
num_total += batch_size
batch_x = batch_x.to(device)
batch_y = batch_y.view(-1).type(torch.int64).to(device)
batch_out = model(batch_x,Freq_aug=False)
batch_loss = criterion(batch_out, batch_y)
val_loss += (batch_loss.item() * batch_size)
val_loss /= num_total
return val_loss
def produce_evaluation_file(dataset, model, device, save_path):
data_loader = DataLoader(dataset, batch_size=8, shuffle=False)
num_correct = 0.0
num_total = 0.0
model.eval()
fname_list = []
key_list = []
sys_id_list = []
score_list = []
for batch_x, batch_y, batch_meta in data_loader:
batch_size = batch_x.size(0)
num_total += batch_size
batch_x = batch_x.to(device)
batch_y = batch_y.view(-1).type(torch.int64).to(device)
batch_out = model(batch_x,Freq_aug=False)
batch_score = (batch_out[:, 1]
).data.cpu().numpy().ravel()
# add outputs
fname_list.extend(list(batch_meta[1]))
key_list.extend(
['bonafide' if key == 1 else 'spoof' for key in list(batch_meta[4])])
sys_id_list.extend([dataset.sysid_dict_inv[s.item()]
for s in list(batch_meta[3])])
score_list.extend(batch_score.tolist())
with open(save_path, 'w') as fh:
for f, s, k, cm in zip(fname_list, sys_id_list, key_list, score_list):
if dataset.is_eval:
fh.write('{} {} {} {}\n'.format(f, s, k, cm))
else:
fh.write('{} {}\n'.format(f, cm))
print('Result saved to {}'.format(save_path))
def train_epoch(data_loader, model, lr,optimizer, device):
running_loss = 0
num_total = 0.0
model.train()
# set objective (Loss) functions --> WCE
weight = torch.FloatTensor([0.1, 0.9]).to(device)
criterion = nn.CrossEntropyLoss(weight=weight)
for batch_x, batch_y, batch_meta in data_loader:
batch_size = batch_x.size(0)
num_total += batch_size
batch_x = batch_x.to(device)
batch_y = batch_y.view(-1).type(torch.int64).to(device)
batch_out = model(batch_x,Freq_aug=True)
batch_loss = criterion(batch_out, batch_y)
running_loss += (batch_loss.item() * batch_size)
optimizer.zero_grad()
batch_loss.backward()
optimizer.step()
running_loss /= num_total
return running_loss
if __name__ == '__main__':
parser = argparse.ArgumentParser('ASVSpoof2019 RawGAT-ST model')
# Dataset
parser.add_argument('--database_path', type=str, default='/your/path/to/data/ASVspoof_database/', help='Change this to user\'s full directory address of LA database (ASVspoof2019- for training, development and evaluation scores). We assume that all three ASVspoof 2019 LA train, LA dev and LA eval data folders are in the same database_path directory.')
'''
% database_path (full LA directory address)/
% |- ASVspoof2019_LA_eval/flac
% |- ASVspoof2019_LA_train/flac
% |- ASVspoof2019_LA_dev/flac
'''
parser.add_argument('--protocols_path', type=str, default='/your/path/to/protocols/ASVspoof_database/', help='Change with path to user\'s LA database protocols directory address')
'''
% protocols_path/
% |- ASVspoof2019.LA.cm.eval.trl.txt
% |- ASVspoof2019.LA.cm.dev.trl.txt
% |- ASVspoof2019.LA.cm.train.trn.txt
'''
# Hyperparameters
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--num_epochs', type=int, default=300)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--loss', type=str, default='WCE',help='Weighted Cross Entropy Loss ')
# model
parser.add_argument('--seed', type=int, default=1234,
help='random seed (default: 1234)')
parser.add_argument('--model_path', type=str,
default=None, help='Model checkpoint')
parser.add_argument('--comment', type=str, default=None,
help='Comment to describe the saved model')
# Auxiliary arguments
parser.add_argument('--track', type=str, default='logical',choices=['logical', 'physical'], help='logical/physical')
parser.add_argument('--eval_output', type=str, default=None,
help='Path to save the evaluation result')
parser.add_argument('--eval', action='store_true', default=False,
help='eval mode')
parser.add_argument('--is_eval', action='store_true', default=False,help='eval database')
parser.add_argument('--eval_part', type=int, default=0)
parser.add_argument('--features', type=str, default='Raw_GAT')
# backend options
parser.add_argument('--cudnn-deterministic-toggle', action='store_false', \
default=True,
help='use cudnn-deterministic? (default true)')
parser.add_argument('--cudnn-benchmark-toggle', action='store_true', \
default=False,
help='use cudnn-benchmark? (default false)')
dir_yaml = os.path.splitext('model_config_RawGAT_ST')[0] + '.yaml'
with open(dir_yaml, 'r') as f_yaml:
parser1 = yaml.load(f_yaml)
if not os.path.exists('models'):
os.mkdir('models')
args = parser.parse_args()
#make experiment reproducible
set_random_seed(args.seed, args)
track = args.track
assert track in ['logical', 'physical'], 'Invalid track given'
is_logical = (track == 'logical')
#define model saving path
model_tag = 'model_{}_{}_{}_{}_{}'.format(
track, args.loss, args.num_epochs, args.batch_size, args.lr)
if args.comment:
model_tag = model_tag + '_{}'.format(args.comment)
model_save_path = os.path.join('models', model_tag)
#set model save directory
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
transforms = transforms.Compose([
lambda x: pad(x),
lambda x: Tensor(x)
])
#GPU device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Device: {}'.format(device))
# validation Dataloader
dev_set = data_utils.ASVDataset(database_path=args.database_path,protocols_path=args.protocols_path,is_train=False, is_logical=is_logical,
transform=transforms,
feature_name=args.features, is_eval=args.is_eval, eval_part=args.eval_part)
dev_loader = DataLoader(dev_set, batch_size=args.batch_size, shuffle=True)
#model
model = RawGAT_ST(parser1['model'], device)
nb_params = sum([param.view(-1).size()[0] for param in model.parameters()])
model =(model).to(device)
# Adam optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,weight_decay=args.weight_decay)
if args.model_path:
model.load_state_dict(torch.load(args.model_path,map_location=device))
print('Model loaded : {}'.format(args.model_path))
# Inference
if args.eval:
assert args.eval_output is not None, 'You must provide an output path'
assert args.model_path is not None, 'You must provide model checkpoint'
produce_evaluation_file(dev_set, model, device, args.eval_output)
sys.exit(0)
# Training Dataloader
train_set = data_utils.ASVDataset(database_path=args.database_path,protocols_path=args.protocols_path,is_train=True, is_logical=is_logical, transform=transforms,
feature_name=args.features)
train_loader = DataLoader(
train_set, batch_size=args.batch_size, shuffle=True)
# Training and validation
num_epochs = args.num_epochs
writer = SummaryWriter('logs/{}'.format(model_tag))
for epoch in range(num_epochs):
running_loss = train_epoch(train_loader,model, args.lr,optimizer, device)
val_loss = evaluate_accuracy(dev_loader, model, device)
writer.add_scalar('val_loss', val_loss, epoch)
writer.add_scalar('loss', running_loss, epoch)
print('\n{} - {} - {} '.format(epoch,
running_loss,val_loss))
torch.save(model.state_dict(), os.path.join(
model_save_path, 'epoch_{}.pth'.format(epoch)))