forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
policy.py
executable file
·446 lines (369 loc) · 16.5 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Policy neural network.
Implements network which takes in input and produces actions
and log probabilities given a sampling distribution parameterization.
"""
import tensorflow as tf
import numpy as np
class Policy(object):
def __init__(self, env_spec, internal_dim,
fixed_std=True, recurrent=True,
input_prev_actions=True):
self.env_spec = env_spec
self.internal_dim = internal_dim
self.rnn_state_dim = self.internal_dim
self.fixed_std = fixed_std
self.recurrent = recurrent
self.input_prev_actions = input_prev_actions
self.matrix_init = tf.truncated_normal_initializer(stddev=0.01)
self.vector_init = tf.constant_initializer(0.0)
@property
def input_dim(self):
return (self.env_spec.total_obs_dim +
self.env_spec.total_sampled_act_dim * self.input_prev_actions)
@property
def output_dim(self):
return self.env_spec.total_sampling_act_dim
def get_cell(self):
"""Get RNN cell."""
self.cell_input_dim = self.internal_dim // 2
cell = tf.contrib.rnn.LSTMCell(self.cell_input_dim,
state_is_tuple=False,
reuse=tf.get_variable_scope().reuse)
cell = tf.contrib.rnn.OutputProjectionWrapper(
cell, self.output_dim,
reuse=tf.get_variable_scope().reuse)
return cell
def core(self, obs, prev_internal_state, prev_actions):
"""Core neural network taking in inputs and outputting sampling
distribution parameters."""
batch_size = tf.shape(obs[0])[0]
if not self.recurrent:
prev_internal_state = tf.zeros([batch_size, self.rnn_state_dim])
cell = self.get_cell()
b = tf.get_variable('input_bias', [self.cell_input_dim],
initializer=self.vector_init)
cell_input = tf.nn.bias_add(tf.zeros([batch_size, self.cell_input_dim]), b)
for i, (obs_dim, obs_type) in enumerate(self.env_spec.obs_dims_and_types):
w = tf.get_variable('w_state%d' % i, [obs_dim, self.cell_input_dim],
initializer=self.matrix_init)
if self.env_spec.is_discrete(obs_type):
cell_input += tf.matmul(tf.one_hot(obs[i], obs_dim), w)
elif self.env_spec.is_box(obs_type):
cell_input += tf.matmul(obs[i], w)
else:
assert False
if self.input_prev_actions:
if self.env_spec.combine_actions: # TODO(ofir): clean this up
prev_action = prev_actions[0]
for i, action_dim in enumerate(self.env_spec.orig_act_dims):
act = tf.mod(prev_action, action_dim)
w = tf.get_variable('w_prev_action%d' % i, [action_dim, self.cell_input_dim],
initializer=self.matrix_init)
cell_input += tf.matmul(tf.one_hot(act, action_dim), w)
prev_action = tf.to_int32(prev_action / action_dim)
else:
for i, (act_dim, act_type) in enumerate(self.env_spec.act_dims_and_types):
w = tf.get_variable('w_prev_action%d' % i, [act_dim, self.cell_input_dim],
initializer=self.matrix_init)
if self.env_spec.is_discrete(act_type):
cell_input += tf.matmul(tf.one_hot(prev_actions[i], act_dim), w)
elif self.env_spec.is_box(act_type):
cell_input += tf.matmul(prev_actions[i], w)
else:
assert False
output, next_state = cell(cell_input, prev_internal_state)
return output, next_state
def sample_action(self, logits, sampling_dim,
act_dim, act_type, greedy=False):
"""Sample an action from a distribution."""
if self.env_spec.is_discrete(act_type):
if greedy:
act = tf.argmax(logits, 1)
else:
act = tf.reshape(tf.multinomial(logits, 1), [-1])
elif self.env_spec.is_box(act_type):
means = logits[:, :sampling_dim / 2]
std = logits[:, sampling_dim / 2:]
if greedy:
act = means
else:
batch_size = tf.shape(logits)[0]
act = means + std * tf.random_normal([batch_size, act_dim])
else:
assert False
return act
def entropy(self, logits,
sampling_dim, act_dim, act_type):
"""Calculate entropy of distribution."""
if self.env_spec.is_discrete(act_type):
entropy = tf.reduce_sum(
-tf.nn.softmax(logits) * tf.nn.log_softmax(logits), -1)
elif self.env_spec.is_box(act_type):
means = logits[:, :sampling_dim / 2]
std = logits[:, sampling_dim / 2:]
entropy = tf.reduce_sum(
0.5 * (1 + tf.log(2 * np.pi * tf.square(std))), -1)
else:
assert False
return entropy
def self_kl(self, logits,
sampling_dim, act_dim, act_type):
"""Calculate KL of distribution with itself.
Used layer only for the gradients.
"""
if self.env_spec.is_discrete(act_type):
probs = tf.nn.softmax(logits)
log_probs = tf.nn.log_softmax(logits)
self_kl = tf.reduce_sum(
tf.stop_gradient(probs) *
(tf.stop_gradient(log_probs) - log_probs), -1)
elif self.env_spec.is_box(act_type):
means = logits[:, :sampling_dim / 2]
std = logits[:, sampling_dim / 2:]
my_means = tf.stop_gradient(means)
my_std = tf.stop_gradient(std)
self_kl = tf.reduce_sum(
tf.log(std / my_std) +
(tf.square(my_std) + tf.square(my_means - means)) /
(2.0 * tf.square(std)) - 0.5,
-1)
else:
assert False
return self_kl
def log_prob_action(self, action, logits,
sampling_dim, act_dim, act_type):
"""Calculate log-prob of action sampled from distribution."""
if self.env_spec.is_discrete(act_type):
act_log_prob = tf.reduce_sum(
tf.one_hot(action, act_dim) * tf.nn.log_softmax(logits), -1)
elif self.env_spec.is_box(act_type):
means = logits[:, :sampling_dim / 2]
std = logits[:, sampling_dim / 2:]
act_log_prob = (- 0.5 * tf.log(2 * np.pi * tf.square(std))
- 0.5 * tf.square(action - means) / tf.square(std))
act_log_prob = tf.reduce_sum(act_log_prob, -1)
else:
assert False
return act_log_prob
def sample_actions(self, output, actions=None, greedy=False):
"""Sample all actions given output of core network."""
sampled_actions = []
logits = []
log_probs = []
entropy = []
self_kl = []
start_idx = 0
for i, (act_dim, act_type) in enumerate(self.env_spec.act_dims_and_types):
sampling_dim = self.env_spec.sampling_dim(act_dim, act_type)
if self.fixed_std and self.env_spec.is_box(act_type):
act_logits = output[:, start_idx:start_idx + act_dim]
log_std = tf.get_variable('std%d' % i, [1, sampling_dim // 2])
# fix standard deviations to variable
act_logits = tf.concat(
[act_logits,
1e-6 + tf.exp(log_std) + 0 * act_logits], 1)
else:
act_logits = output[:, start_idx:start_idx + sampling_dim]
if actions is None:
act = self.sample_action(act_logits, sampling_dim,
act_dim, act_type,
greedy=greedy)
else:
act = actions[i]
ent = self.entropy(act_logits, sampling_dim, act_dim, act_type)
kl = self.self_kl(act_logits, sampling_dim, act_dim, act_type)
act_log_prob = self.log_prob_action(
act, act_logits,
sampling_dim, act_dim, act_type)
sampled_actions.append(act)
logits.append(act_logits)
log_probs.append(act_log_prob)
entropy.append(ent)
self_kl.append(kl)
start_idx += sampling_dim
assert start_idx == self.env_spec.total_sampling_act_dim
return sampled_actions, logits, log_probs, entropy, self_kl
def get_kl(self, my_logits, other_logits):
"""Calculate KL between one policy output and another."""
kl = []
for i, (act_dim, act_type) in enumerate(self.env_spec.act_dims_and_types):
sampling_dim = self.env_spec.sampling_dim(act_dim, act_type)
single_my_logits = my_logits[i]
single_other_logits = other_logits[i]
if self.env_spec.is_discrete(act_type):
my_probs = tf.nn.softmax(single_my_logits)
my_log_probs = tf.nn.log_softmax(single_my_logits)
other_log_probs = tf.nn.log_softmax(single_other_logits)
my_kl = tf.reduce_sum(my_probs * (my_log_probs - other_log_probs), -1)
elif self.env_spec.is_box(act_type):
my_means = single_my_logits[:, :sampling_dim / 2]
my_std = single_my_logits[:, sampling_dim / 2:]
other_means = single_other_logits[:, :sampling_dim / 2]
other_std = single_other_logits[:, sampling_dim / 2:]
my_kl = tf.reduce_sum(
tf.log(other_std / my_std) +
(tf.square(my_std) + tf.square(my_means - other_means)) /
(2.0 * tf.square(other_std)) - 0.5,
-1)
else:
assert False
kl.append(my_kl)
return kl
def single_step(self, prev, cur, greedy=False):
"""Single RNN step. Equivalently, single-time-step sampled actions."""
prev_internal_state, prev_actions, _, _, _, _ = prev
obs, actions = cur # state observed and action taken at this time step
# feed into RNN cell
output, next_state = self.core(
obs, prev_internal_state, prev_actions)
# sample actions with values and log-probs
(actions, logits, log_probs,
entropy, self_kl) = self.sample_actions(
output, actions=actions, greedy=greedy)
return (next_state, tuple(actions), tuple(logits), tuple(log_probs),
tuple(entropy), tuple(self_kl))
def sample_step(self, obs, prev_internal_state, prev_actions, greedy=False):
"""Sample single step from policy."""
(next_state, sampled_actions, logits, log_probs,
entropies, self_kls) = self.single_step(
(prev_internal_state, prev_actions, None, None, None, None),
(obs, None), greedy=greedy)
return next_state, sampled_actions
def multi_step(self, all_obs, initial_state, all_actions):
"""Calculate log-probs and other calculations on batch of episodes."""
batch_size = tf.shape(initial_state)[0]
time_length = tf.shape(all_obs[0])[0]
initial_actions = [act[0] for act in all_actions]
all_actions = [tf.concat([act[1:], act[0:1]], 0)
for act in all_actions] # "final" action is dummy
(internal_states, _, logits, log_probs,
entropies, self_kls) = tf.scan(
self.single_step,
(all_obs, all_actions),
initializer=self.get_initializer(
batch_size, initial_state, initial_actions))
# remove "final" computations
log_probs = [log_prob[:-1] for log_prob in log_probs]
entropies = [entropy[:-1] for entropy in entropies]
self_kls = [self_kl[:-1] for self_kl in self_kls]
return internal_states, logits, log_probs, entropies, self_kls
def get_initializer(self, batch_size, initial_state, initial_actions):
"""Get initializer for RNN."""
logits_init = []
log_probs_init = []
for act_dim, act_type in self.env_spec.act_dims_and_types:
sampling_dim = self.env_spec.sampling_dim(act_dim, act_type)
logits_init.append(tf.zeros([batch_size, sampling_dim]))
log_probs_init.append(tf.zeros([batch_size]))
entropy_init = [tf.zeros([batch_size]) for _ in self.env_spec.act_dims]
self_kl_init = [tf.zeros([batch_size]) for _ in self.env_spec.act_dims]
return (initial_state,
tuple(initial_actions),
tuple(logits_init), tuple(log_probs_init),
tuple(entropy_init),
tuple(self_kl_init))
def calculate_kl(self, my_logits, other_logits):
"""Calculate KL between one policy and another on batch of episodes."""
batch_size = tf.shape(my_logits[0])[1]
time_length = tf.shape(my_logits[0])[0]
reshaped_my_logits = [
tf.reshape(my_logit, [batch_size * time_length, -1])
for my_logit in my_logits]
reshaped_other_logits = [
tf.reshape(other_logit, [batch_size * time_length, -1])
for other_logit in other_logits]
kl = self.get_kl(reshaped_my_logits, reshaped_other_logits)
kl = [tf.reshape(kkl, [time_length, batch_size])
for kkl in kl]
return kl
class MLPPolicy(Policy):
"""Non-recurrent policy."""
def get_cell(self):
self.cell_input_dim = self.internal_dim
def mlp(cell_input, prev_internal_state):
w1 = tf.get_variable('w1', [self.cell_input_dim, self.internal_dim])
b1 = tf.get_variable('b1', [self.internal_dim])
w2 = tf.get_variable('w2', [self.internal_dim, self.internal_dim])
b2 = tf.get_variable('b2', [self.internal_dim])
w3 = tf.get_variable('w3', [self.internal_dim, self.internal_dim])
b3 = tf.get_variable('b3', [self.internal_dim])
proj = tf.get_variable(
'proj', [self.internal_dim, self.output_dim])
hidden = cell_input
hidden = tf.tanh(tf.nn.bias_add(tf.matmul(hidden, w1), b1))
hidden = tf.tanh(tf.nn.bias_add(tf.matmul(hidden, w2), b2))
output = tf.matmul(hidden, proj)
return output, hidden
return mlp
def single_step(self, obs, actions, prev_actions, greedy=False):
"""Single step."""
batch_size = tf.shape(obs[0])[0]
prev_internal_state = tf.zeros([batch_size, self.internal_dim])
output, next_state = self.core(
obs, prev_internal_state, prev_actions)
# sample actions with values and log-probs
(actions, logits, log_probs,
entropy, self_kl) = self.sample_actions(
output, actions=actions, greedy=greedy)
return (next_state, tuple(actions), tuple(logits), tuple(log_probs),
tuple(entropy), tuple(self_kl))
def sample_step(self, obs, prev_internal_state, prev_actions, greedy=False):
"""Sample single step from policy."""
(next_state, sampled_actions, logits, log_probs,
entropies, self_kls) = self.single_step(obs, None, prev_actions,
greedy=greedy)
return next_state, sampled_actions
def multi_step(self, all_obs, initial_state, all_actions):
"""Calculate log-probs and other calculations on batch of episodes."""
batch_size = tf.shape(initial_state)[0]
time_length = tf.shape(all_obs[0])[0]
# first reshape inputs as a single batch
reshaped_obs = []
for obs, (obs_dim, obs_type) in zip(all_obs, self.env_spec.obs_dims_and_types):
if self.env_spec.is_discrete(obs_type):
reshaped_obs.append(tf.reshape(obs, [time_length * batch_size]))
elif self.env_spec.is_box(obs_type):
reshaped_obs.append(tf.reshape(obs, [time_length * batch_size, obs_dim]))
reshaped_act = []
reshaped_prev_act = []
for i, (act_dim, act_type) in enumerate(self.env_spec.act_dims_and_types):
act = tf.concat([all_actions[i][1:], all_actions[i][0:1]], 0)
prev_act = all_actions[i]
if self.env_spec.is_discrete(act_type):
reshaped_act.append(tf.reshape(act, [time_length * batch_size]))
reshaped_prev_act.append(
tf.reshape(prev_act, [time_length * batch_size]))
elif self.env_spec.is_box(act_type):
reshaped_act.append(
tf.reshape(act, [time_length * batch_size, act_dim]))
reshaped_prev_act.append(
tf.reshape(prev_act, [time_length * batch_size, act_dim]))
# now inputs go into single step as one large batch
(internal_states, _, logits, log_probs,
entropies, self_kls) = self.single_step(
reshaped_obs, reshaped_act, reshaped_prev_act)
# reshape the outputs back to original time-major format
internal_states = tf.reshape(internal_states, [time_length, batch_size, -1])
logits = [tf.reshape(logit, [time_length, batch_size, -1])
for logit in logits]
log_probs = [tf.reshape(log_prob, [time_length, batch_size])[:-1]
for log_prob in log_probs]
entropies = [tf.reshape(ent, [time_length, batch_size])[:-1]
for ent in entropies]
self_kls = [tf.reshape(self_kl, [time_length, batch_size])[:-1]
for self_kl in self_kls]
return internal_states, logits, log_probs, entropies, self_kls