-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotMeasurment.py
303 lines (248 loc) · 10.9 KB
/
plotMeasurment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import matplotlib.pyplot as plt
import os
import subprocess
import argparse
import numpy as np
def ensure_path_exists(path):
if not os.path.exists(path):
os.makedirs(path)
print(f"Path '{path}' created.")
else:
print(f"Path '{path}' already exists.")
def copy_docker_files(name, prodCount):
try:
ensure_path_exists(f'./measurments/{name}/')
# Run the docker cp command
result = subprocess.run(
["docker", "cp", "manager:/app/m_reports/", f"./measurments/{name}/"],
check=True,
capture_output=True,
text=True
)
for i in range(prodCount):
result = subprocess.run(
["docker", "cp", f"producer_{i+1}:/app/p{i+1}_reports/", f"./measurments/{name}"],
check=True,
capture_output=True,
text=True
)
for i in range(4):
result = subprocess.run(
["docker", "cp", f"consumer_{i+1}:/app/c{i+1}_reports/", f"./measurments/{name}"],
check=True,
capture_output=True,
text=True
)
ensure_path_exists(f"./measurments/{name}/confings")
for i in range(4):
result = subprocess.run(
["docker", "cp", f"consumer_{i+1}:app/appsettings.json", f"./measurments/{name}/confings/c{i+1}"],
check=True,
capture_output=True,
text=True
)
for i in range(prodCount):
result = subprocess.run(
["docker", "cp", f"producer_{i+1}:app/appsettings.json", f"./measurments/{name}/confings/p{i+1}"],
check=True,
capture_output=True,
text=True
)
result = subprocess.run(
["docker", "cp", f"manager:app/appsettings.json", f"./measurments/{name}/confings/m"],
check=True,
capture_output=True,
text=True
)
print("Command output:", result.stdout)
except subprocess.CalledProcessError as e:
print("Error occurred:", e)
print("Command output:", e.stdout)
print("Command error output:", e.stderr)
def read_numbers_from_file(filename):
numbers_array = []
with open(filename, 'r') as file:
idx = -1
for line in file:
try:
number = float(line)
numbers_array[idx].append(number)
except ValueError:
numbers_array.append([])
idx += 1
return numbers_array
def normalize(lists):
last_array = lists[-1]
last_array_len = len(last_array)
last_array_last_value = last_array[-1]
for i in range(len(lists)):
lists[i] = [
min(val, last_array[idx] if idx < last_array_len else last_array_last_value)
for idx, val in enumerate(lists[i])
]
def combine_plots(lists, labels, name, yaxis):
fig, ax = plt.subplots()
for lst, label in zip(lists, labels):
x = np.arange(0, len(lst) * 5, 5) # Generate x-values based on 5-second intervals, modify manualy for different report rates
ax.plot(x, lst, label=label)
ax.set_xlabel('Time [seconds]')
ax.set_ylabel(yaxis)
ax.set_title(name)
ax.grid(True)
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
def get_horizontal_diff(consumer, topic, index):
if consumer[index] == 0:
return 0
tmpIdx = index
steps = 0
tmpIdx = min(tmpIdx, len(topic) - 2)
if topic[tmpIdx] == consumer[index]:
return 0
while topic[tmpIdx] > consumer[index]:
tmpIdx -= 1
steps += 1
return (steps + ( 1 - ((consumer[index] - topic[tmpIdx]) / (topic[tmpIdx + 1] - topic[tmpIdx])))) * 5
def get_stale_error(data, con):
sem = []
for i in range(con):
se = []
for j in range(len(data[i])):
se.append(get_horizontal_diff(data[i], data[con], j))
sem.append(se)
return sem
def get_throughput(data):
result = []
for list in data:
throughput = []
for i in range(1, len(list)):
throughput.append((list[i] - list[i-1]) / 5)
result.append(throughput)
return result
def get_num_error(data, con):
sem = []
for i in range(con):
se = []
for j in range(len(data[i])):
tmp = min(j, len(data[con]) - 1)
se.append(max(data[con][tmp] - data[i][j],0))
sem.append(se)
return sem
def writeErrors(name, array, num_to_plot, topic):
idx = 1
ensure_path_exists(name + '/se/' + topic)
for list in get_stale_error(array, num_to_plot):
with open(f'{name}/se/{topic}/{idx}.txt', 'w') as file:
for ele in list:
file.write(f"{ele}\n")
idx += 1
idx = 1
ensure_path_exists(name + '/ne/' + topic)
for list in get_num_error(array, num_to_plot):
with open(f'{name}/ne/{topic}/{idx}.txt', 'w') as file:
for ele in list:
file.write(f"{ele}\n")
idx += 1
def writeThroughput(name, array, topic):
idx = 1
ensure_path_exists(f'{name[:-1]}/{name}/through/{topic}/')
for list in array:
with open(f'{name[:-1]}/{name}/through/{topic}/{idx}.txt', 'w') as file:
for ele in list:
file.write(f"{ele}\n")
idx += 1
parser = argparse.ArgumentParser(description="take measurments")
parser.add_argument('name', type=str, help='name of measurment')
parser.add_argument('--skip', action='store_true', help="skip the copy call -> plot/save already copied data")
parser.add_argument('--no_write', action='store_true', help="do not store resutls")
parser.add_argument('--no_plot', action='store_true', help="dont plot")
parser.add_argument('--number', type=int, default=4, help='number of consumer to plot, only change if --no_write')
parser.add_argument('--prod', type=int, default=3, help='number of consumer to plot, only change if --no_write')
args = parser.parse_args()
if not args.skip:
copy_docker_files(args.name, args.prod)
c_reports = []
for i in range(4):
path_cpu = f'measurments/{args.name}/c{i+1}_reports/cpu.txt'
with open(path_cpu, 'r') as f:
content = [float(x) for x in f.read().split()]
c_reports.append(content)
p_reports = []
producers = f'measurments/{args.name}/m_reports/producers'
files = os.listdir(producers)
for file in files:
with open(os.path.join(producers, file), 'r') as f:
content = [float(x) for x in f.read().split()]
p_reports.append(content)
names = []
if args.number == 4:
names = ['Dyconit consumer 1','Dyconit consumer 2','Kafka consumer 1', 'Kafka consumer 2', 'Overall Produced Topic Messages']
if args.number == 2:
names = ['Dyconit consumer', 'Kafka consumer', 'Overall Produced Topic Messages']
combine_plots(c_reports, names, 'Consumer CPU usage', 'CPU usage [%]')
combine_plots(p_reports, ['High Priority Topic','Medium Priority Topic','Low Priority Topic'], 'Topic Production Rates', 'Production rate [messages per second]')
msg_tn = []
msg_tp = []
msg_tl = []
nep = []
nen = []
nel = []
sep = []
sen = []
sel = []
for i in range( (int)(0 + (2 - args.number / 2)), (int)(4 - (2 - args.number / 2))):
path_normal = f'measurments/{args.name}/c{i+1}_reports/msgcount_topic_normal.txt'
path_prio = f'measurments/{args.name}/c{i+1}_reports/msgcount_topic_priority.txt'
path_low = f'measurments/{args.name}/c{i+1}_reports/msgcount_topic_low.txt'
with open(path_normal, 'r') as f:
content = [int(x) for x in f.read().split()]
msg_tn.append(content)
with open(path_prio, 'r') as f:
content = [int(x) for x in f.read().split()]
msg_tp.append(content)
if (args.prod > 2):
with open(path_low, 'r') as f:
content = [int(x) for x in f.read().split()]
msg_tl.append(content)
path_prio = f'measurments/{args.name}/p1_reports/msgcount.txt'
path_normal = f'measurments/{args.name}/p2_reports/msgcount.txt'
path_low = f'measurments/{args.name}/p3_reports/msgcount.txt'
with open(path_prio, 'r') as f:
content = [int(x) for x in f.read().split()]
msg_tp.append(content)
with open(path_normal, 'r') as f:
content = [int(x) for x in f.read().split()]
msg_tn.append(content)
if (args.prod > 2):
with open(path_low, 'r') as f:
content = [int(x) for x in f.read().split()]
msg_tl.append(content)
normalize(msg_tn)
if (args.prod > 2):
normalize(msg_tl)
normalize(msg_tp)
combine_plots(msg_tp,names, 'High Priority Topic Messages Consumed', 'Message count')
combine_plots(msg_tn,names, 'Medium Priority Topic Messages Consumed', 'Message count')
combine_plots(get_throughput(msg_tp),names, 'High Priority Topic Message Throughput', 'Throughput [messages per second]')
combine_plots(get_throughput(msg_tn),names, 'Medium Priority Topic Message Throughput', 'Throughput [messages per second]')
if (args.prod > 2):
combine_plots(msg_tl,names, 'Low Priority Topic Messages Consumed', 'Message count')
combine_plots(get_throughput(msg_tl),names, 'Low Priority Topic Message Throughput', 'Throughput [messages per second]')
if not args.no_write:
writeThroughput(args.name, get_throughput(msg_tl), 'tl')
writeThroughput(args.name, get_throughput(msg_tn), 'tn')
writeThroughput(args.name, get_throughput(msg_tp), 'tp')
combine_plots(get_stale_error(msg_tp, args.number),names, 'High Priority Topic Staleness Error', 'Staleness Error [seconds]')
combine_plots(get_num_error(msg_tp, args.number),names, 'High Priority Topic Numerical Error', 'Numerical Error [seconds]')
combine_plots(get_stale_error(msg_tn, args.number),names, 'Medium Priority Topic Staleness Error', 'Staleness Error [seconds]')
combine_plots(get_num_error(msg_tn, args.number),names, 'Medium Priority Topic Numerical Error', 'Numerical Error [seconds]')
combine_plots(get_stale_error(msg_tl, args.number),names, 'Low Priority Topic Staleness Error', 'Staleness Error [seconds]')
combine_plots(get_num_error(msg_tl, args.number),names, 'Low Priority Topic Numerical Error', 'Numerical Error [seconds]')
if not args.no_write:
ensure_path_exists(args.name[:-1] + '/' + args.name + '/errors/' + '/se')
ensure_path_exists(args.name[:-1] + '/' + args.name + '/errors/' + '/ne')
writeErrors(args.name[:-1] + '/' + args.name + '/errors/', msg_tp, args.number, 'tp')
writeErrors(args.name[:-1] + '/' + args.name + '/errors/', msg_tn, args.number, 'tn')
writeErrors(args.name[:-1] + '/' + args.name + '/errors/', msg_tl, args.number, 'tl')
if not args.no_plot:
plt.show()