-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_zeroshot.py
115 lines (95 loc) · 4.35 KB
/
eval_zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os, datetime
import numpy as np
from sklearn import svm, metrics
from sklearn.model_selection import GridSearchCV
import torch
from torch.utils.data import DataLoader
from datasets.data import ModelNet40SVM, ScanObjectNNSVM
from utils import build_model
from parser import args
from fvcore.nn import FlopCountAnalysis
device = torch.device("cuda")
save_path = os.path.join('runs', args.proj_name, args.exp_name, 'models', args.pc_model_file)
state_dict = torch.load(save_path)
pc_model, _ = build_model(device)
model = pc_model
print('\n')
print(model)
print('\n')
model.load_state_dict(state_dict)
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('total parameters:', pytorch_total_params)
# total parameters: 8,490,240
if args.pt_dataset == "ModelNet40":
train_loader = DataLoader(ModelNet40SVM(partition='train', num_points=args.num_test_points),
batch_size=args.test_batch_size, shuffle=True)
test_loader = DataLoader(ModelNet40SVM(partition='test', num_points=args.num_test_points),
batch_size=args.test_batch_size, shuffle=True)
elif args.pt_dataset == "ScanObjectNN":
train_loader = DataLoader(ScanObjectNNSVM(partition='train', num_points=args.num_test_points),
batch_size=args.test_batch_size, shuffle=True)
test_loader = DataLoader(ScanObjectNNSVM(partition='test', num_points=args.num_test_points),
batch_size=args.test_batch_size, shuffle=True)
model = model.eval()
with torch.no_grad():
feats_train = []
labels_train = []
for i, (data, label) in enumerate(train_loader):
if args.pt_dataset == "ModelNet40":
labels = list(map(lambda x: x[0],label.tolist()))
elif args.pt_dataset == "ScanObjectNN":
labels = label.tolist()
data = data.to(device)
# model(data)[1] is the features output by CrossFormer backbone
feats = model(data)[1].tolist()
feats_train.extend(feats)
labels_train.extend(labels)
feats_train = np.array(feats_train)
labels_train = np.array(labels_train)
print('feats_train.shape:', feats_train.shape)
feats_test = []
labels_test = []
for i, (data, label) in enumerate(test_loader):
if args.pt_dataset == "ModelNet40":
labels = list(map(lambda x: x[0],label.tolist()))
elif args.pt_dataset == "ScanObjectNN":
labels = label.tolist()
data = data.to(device)
# model(data)[1] is the features output by CrossFormer backbone
feats = model(data)[1].tolist()
feats_test.extend(feats)
labels_test.extend(labels)
feats_test = np.array(feats_test)
labels_test = np.array(labels_test)
print('feats_test.shape:', feats_test.shape)
flops = FlopCountAnalysis(model, data)
print('fvcore - total flops:', flops.total())
# total flops scanobjectnn: 122,689,855,488.0 / test_batch_size(160)
# total flops modelnet40: 82,603,294,784.0 /test_batch_size(160)
# ------ Linear SVM
# Linear SVM parameter C, can be tuned
c = args.svm_coff
linear_svm = svm.SVC(C = c, kernel ='linear')
linear_svm.fit(feats_train, labels_train)
print(f"Linear SVM, C = {c} : {linear_svm.score(feats_test, labels_test)}")
# ------ RBF SVM
rbf_svm = svm.SVC(C = c, kernel ='rbf')
rbf_svm.fit(feats_train, labels_train)
print(f"RBF SVM, C = {c} : {rbf_svm.score(feats_test, labels_test)}")
# ------ grid search parameters for SVM
print("\n\n")
print("="*37)
svm_clsf = svm.SVC()
# [1e-1, 5e-1, 1e0, 5e0, 1e1, 5e1]
C_range = np.outer(np.logspace(-1, 1, 3), np.array([1, 5])).flatten()
parameters = {'kernel': ['linear', 'rbf'], 'C': C_range}
grid_clsf = GridSearchCV(estimator=svm_clsf, param_grid=parameters, n_jobs=8, verbose=1)
start_time = datetime.datetime.now()
print('Start Param Searching at {}'.format(str(start_time)))
grid_clsf.fit(feats_train, labels_train)
print('Elapsed time, param searching {}'.format(str(datetime.datetime.now() - start_time)))
sorted(grid_clsf.cv_results_.keys())
# scores = grid_clsf.cv_results_['mean_test_score'].reshape(len(C_range), len(gamma_range))
labels_pred = grid_clsf.best_estimator_.predict(feats_test)
print("Best Params via Grid Search Cross Validation on Train Split is: ", grid_clsf.best_params_)
print("Best Model's Accuracy on Test Dataset: {}".format(metrics.accuracy_score(labels_test, labels_pred)))