-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
396 lines (341 loc) · 17.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import shutil
import logging
from unittest.mock import patch
import numpy as np
import torch
import torch.nn.functional as F
from parser import args
from vipformer.model.core import PerceiverEncoder, PerceiverEncoder_feats_head
from vipformer.model.core import PerceiverDecoder, PerceiverIO, ClassificationOutputAdapter
from vipformer.model.image import ImageInputAdapter
from vipformer.model.pointcloud import PointCloudInputAdapter, CrossFormer_partseg, CrossFormer_semseg
from vipformer.model.pointcloud import CrossFormer_pc_mp, CrossFormer_img_mp, CrossFormer_pc_mp_ft
import torchvision.transforms as transforms
transform = transforms.Compose([transforms.Resize((args.img_height, args.img_width)),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
# shapenetpart: 16 object classes, 50 parts
# NOTE do not use these weights, otherwise the model performance will degrade significantly
shapenetpart_part_weights = [0.0756, 0.0547, 0.0214, 0.0160, 0.0003, 0.0041, 0.0023, 0.0008,
0.0028, 0.0038, 0.0085, 0.0378, 0.0742, 0.0900, 0.0466, 0.0073, 0.0024, 0.0010,
0.0005, 0.0039, 0.0087, 0.0323, 0.0113, 0.0109, 0.0148, 0.0537, 0.0011, 0.0204,
0.0140, 0.0122, 0.0005, 0.0004, 0.0025, 0.0002, 7.6761e-05, 0.0071, 0.0006, 0.0098, 0.0112,
0.0049, 0.0009, 0.0027, 0.0007, 0.0004, 0.0010, 0.0070, 0.0006, 0.2342, 0.0727, 0.0089]
category2part = {'Airplane': [0, 1, 2, 3], 'Bag': [4, 5], 'Cap': [6, 7], 'Car': [8, 9, 10, 11], 'Chair': [12, 13, 14, 15],
'Earphone': [16, 17, 18], 'Guitar': [19, 20, 21], 'Knife': [22, 23], 'Lamp': [24, 25, 26, 27], 'Laptop': [28, 29],
'Motorbike': [30, 31, 32, 33, 34, 35], 'Mug': [36, 37], 'Pistol': [38, 39, 40], 'Rocket': [41, 42, 43],
'Skateboard': [44, 45, 46], 'Table': [47, 48, 49]}
part2category = { 0:'Airplane', 1:'Airplane', 2:'Airplane', 3:'Airplane', 4:'Bag', 5:'Bag', 6:'Cap', 7:'Cap',
8:'Car', 9:'Car', 10:'Car', 11:'Car', 12:'Chair', 13:'Chair', 14:'Chair', 15:'Chair',
16:'Earphone', 17:'Earphone', 18:'Earphone', 19:'Guitar', 20:'Guitar', 21:'Guitar', 22:'Knife', 23:'Knife',
24:'Lamp', 25:'Lamp', 26:'Lamp', 27:'Lamp', 28:'Laptop', 29:'Laptop', 30:'Motorbike', 31:'Motorbike',
32:'Motorbike', 33:'Motorbike', 34:'Motorbike', 35:'Motorbike', 36:'Mug', 37:'Mug', 38:'Pistol', 39:'Pistol',
40:'Pistol', 41:'Rocket', 42:'Rocket', 43:'Rocket', 44:'Skateboard', 45:'Skateboard', 46:'Skateboard',
47:'Table', 48:'Table', 49:'Table'}
# s3dis: 13 object classes
s3dis_obj_weights = [0.2525, 0.2322, 0.1732, 0.0242, 0.0156, 0.0106, 0.0460, 0.0340, 0.0533, 0.0049, 0.0329, 0.0069, 0.1138]
categories = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter']
category2label = {cls: i for i, cls in enumerate(categories)}
label2category = {}
for i, cat in enumerate(category2label.keys()):
label2category[i] = cat
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class AccuracyMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.num_pos = 0
self.num_neg = 0
self.total = 0
def update(self, num_pos, num_neg, n=1):
self.num_pos += num_pos
self.num_neg += num_neg
self.total += n
def pos_count(self, pred, label):
# torch.eq(a,b): Computes element-wise equality
results = torch.eq(pred, label)
return results.sum()
class Logger(object):
def __init__(self, logger_name='Test', log_level=logging.INFO, log_path='runs', log_file='test.log'):
logger = logging.getLogger(logger_name)
logger.setLevel(log_level)
formatter = logging.Formatter('%(asctime)s [%(levelname)s] [%(name)s] %(message)s')
file_handler = logging.FileHandler(os.path.join(log_path, log_file))
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
self.logger = logger
def write(self, msg, rank=-1):
if rank == 0:
self.logger.info(msg)
def build_model(rank=None):
''' construct a point cloud and an image model,
which will pretrain on a selected dataset
'''
pc_input_adapter = PointCloudInputAdapter(
pointcloud_shape=(args.num_pt_points, args.point_channels),
num_input_channels=args.num_latent_channels).to(rank)
if args.mp:
pc_model = CrossFormer_pc_mp(input_adapter=pc_input_adapter,
num_latents=args.num_pc_latents,
num_latent_channels=args.num_latent_channels,
group_size=args.group_size,
num_cross_attention_layers=args.num_ca_layers,
num_cross_attention_heads=args.num_ca_heads,
num_self_attention_layers=args.num_sa_layers,
num_self_attention_heads=args.num_sa_heads,
mlp_widen_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop,
modal_prior=True).to(rank)
if args.modality != 'imc-only':
img_model = CrossFormer_img_mp(
img_height=args.img_height,
img_width=args.img_width,
patch_size=args.patch_size,
num_latent_channels=args.num_latent_channels,
num_cross_attention_layers=args.num_ca_layers,
num_cross_attention_heads=args.num_ca_heads,
num_self_attention_layers=args.num_sa_layers,
num_self_attention_heads=args.num_sa_heads,
mlp_widen_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop,
modal_prior=True).to(rank)
return pc_model, img_model
else:
# Generic Perceiver encoder
pc_model = PerceiverEncoder_feats_head(
input_adapter=pc_input_adapter,
num_latents=args.num_pc_latents, # N
num_latent_channels=args.num_latent_channels, # D
num_cross_attention_heads=args.num_ca_heads,
num_cross_attention_qk_channels=pc_input_adapter.num_input_channels, # C
num_cross_attention_v_channels=None,
num_cross_attention_layers=args.num_ca_layers,
first_cross_attention_layer_shared=False,
cross_attention_widening_factor=args.mlp_widen_factor,
num_self_attention_heads=args.num_sa_heads,
num_self_attention_qk_channels=None,
num_self_attention_v_channels=None,
num_self_attention_layers_per_block=args.num_sa_layers_per_block,
num_self_attention_blocks=args.num_sa_blocks,
first_self_attention_block_shared=True,
self_attention_widening_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop).to(rank)
if args.modality != 'imc-only':
img_input_adapter = ImageInputAdapter(
image_shape=(args.img_height, args.img_width, 3),
num_frequency_bands=64).to(rank)
# Generic Perceiver encoder
img_model = PerceiverEncoder_feats_head(
input_adapter=img_input_adapter,
num_latents=args.num_img_latents, # N
num_latent_channels=args.num_latent_channels, # D
num_cross_attention_heads=args.num_ca_heads,
num_cross_attention_qk_channels=args.num_latent_channels, # C
num_cross_attention_v_channels=None,
num_cross_attention_layers=args.num_ca_layers,
first_cross_attention_layer_shared=False,
cross_attention_widening_factor=args.mlp_widen_factor,
num_self_attention_heads=args.num_sa_heads,
num_self_attention_qk_channels=None,
num_self_attention_v_channels=None,
num_self_attention_layers_per_block=args.num_sa_layers_per_block,
num_self_attention_blocks=args.num_sa_blocks,
first_self_attention_block_shared=True,
self_attention_widening_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop).to(rank)
return pc_model, img_model
return pc_model
def build_ft_cls(rank=None):
''' construct a point cloud model, which will finetune on downstream datasets
'''
input_adapter = PointCloudInputAdapter(
pointcloud_shape=(args.num_pt_points, args.point_channels),
num_input_channels=args.num_latent_channels).to(rank)
if args.mp:
model = CrossFormer_pc_mp_ft(
input_adapter=input_adapter,
num_latents=args.num_pc_latents,
num_latent_channels=args.num_latent_channels,
group_size=args.group_size,
num_cross_attention_layers=args.num_ca_layers,
num_cross_attention_heads=args.num_ca_heads,
num_self_attention_layers=args.num_sa_layers,
num_self_attention_heads=args.num_sa_heads,
mlp_widen_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop,
modal_prior=True,
num_obj_classes=args.num_obj_classes).to(rank)
else:
encoder = PerceiverEncoder(
input_adapter=input_adapter,
num_latents=args.num_pc_latents, # N
num_latent_channels=args.num_latent_channels, # D
num_cross_attention_heads=args.num_ca_heads,
num_cross_attention_qk_channels=input_adapter.num_input_channels, # C
num_cross_attention_v_channels=None,
num_cross_attention_layers=args.num_ca_layers,
first_cross_attention_layer_shared=False,
cross_attention_widening_factor=args.mlp_widen_factor,
num_self_attention_heads=args.num_sa_heads,
num_self_attention_qk_channels=None,
num_self_attention_v_channels=None,
num_self_attention_layers_per_block=args.num_sa_layers_per_block,
num_self_attention_blocks=args.num_sa_blocks,
first_self_attention_block_shared=True,
self_attention_widening_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop).to(rank)
output_adapter = ClassificationOutputAdapter(
num_classes=args.num_obj_classes,
num_output_queries=args.output_seq_length,
num_output_query_channels=args.num_latent_channels).to(rank)
decoder = PerceiverDecoder(
output_adapter=output_adapter,
num_latent_channels=args.num_latent_channels, # D
num_cross_attention_heads=args.num_ca_heads,
num_cross_attention_qk_channels=args.num_latent_channels,
num_cross_attention_v_channels=None,
cross_attention_widening_factor=args.mlp_widen_factor,
num_self_attention_heads=args.num_sa_heads,
num_self_attention_qk_channels=None,
num_self_attention_v_channels=None,
num_self_attention_layers_per_block=2, # In decoder, set `num_sa_layers=2`
self_attention_widening_factor=args.mlp_widen_factor,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop).to(rank)
# PerceiverDecoder_var doesn't show better performances than PerceiverDecoder
# decoder = PerceiverDecoder_var(
# num_latent_channels=args.num_latent_channels,
# num_classes=args.num_obj_classes,
# mlp_drop=args.mlp_drop
# )
model = PerceiverIO(encoder, decoder).to(rank)
return model
def build_ft_partseg(rank=None):
input_adapter = PointCloudInputAdapter(
pointcloud_shape=(args.num_ft_points, args.point_channels),
num_input_channels=args.num_latent_channels).to(rank)
model = CrossFormer_partseg(
input_adapter=input_adapter,
num_latents=args.num_pc_latents,
num_latent_channels=args.num_latent_channels,
group_size=args.group_size,
num_cross_attention_layers=args.num_ca_layers,
num_cross_attention_heads=args.num_ca_heads,
num_self_attention_layers=args.num_sa_layers,
num_self_attention_heads=args.num_sa_heads,
mlp_widen_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop,
layer_idx=args.layer_idx,
num_part_classes=args.num_part_classes).to(rank)
return model
def build_ft_semseg(rank=None):
input_adapter = PointCloudInputAdapter(
pointcloud_shape=(args.num_ft_points, args.point_channels),
num_input_channels=args.num_latent_channels).to(rank)
model = CrossFormer_semseg(
input_adapter=input_adapter,
point_channels=args.point_channels,
num_latents=args.num_pc_latents,
num_latent_channels=args.num_latent_channels,
group_size=args.group_size,
num_cross_attention_layers=args.num_ca_layers,
num_cross_attention_heads=args.num_ca_heads,
num_self_attention_layers=args.num_sa_layers,
num_self_attention_heads=args.num_sa_heads,
mlp_widen_factor=args.mlp_widen_factor,
max_dpr=args.max_dpr,
atten_drop=args.atten_drop,
mlp_drop=args.mlp_drop,
layer_idx=args.layer_idx,
num_obj_classes=args.num_obj_classes).to(rank)
return model
def init(proj_name, exp_name, main_program, model_name):
if not os.path.exists('runs'):
os.makedirs('runs')
if not os.path.exists(os.path.join('runs', proj_name)):
os.makedirs(os.path.join('runs', proj_name))
if not os.path.exists(os.path.join('runs', proj_name, exp_name)):
os.makedirs(os.path.join('runs', proj_name, exp_name))
if not os.path.exists(os.path.join('runs', proj_name, exp_name, 'files')):
os.makedirs(os.path.join('runs',proj_name, exp_name, 'files'))
if not os.path.exists(os.path.join('runs', proj_name, exp_name, 'models')):
os.makedirs(os.path.join('runs', proj_name, exp_name, 'models'))
shutil.copy(main_program, os.path.join('runs', proj_name, exp_name, 'files'))
if 'seg.py' in main_program: # ft_partseg.py, ft_semseg.py
shutil.copy(f'perceiver/model/pointcloud/{model_name}', os.path.join('runs', proj_name, exp_name, 'files'))
else:
if args.mp:
shutil.copy(f'perceiver/model/pointcloud/partseg.py', os.path.join('runs', proj_name, exp_name, 'files'))
else:
shutil.copy(f'perceiver/model/core/{model_name}', os.path.join('runs', proj_name, exp_name, 'files'))
shutil.copy('utils.py', os.path.join('runs', proj_name, exp_name, 'files'))
# to fix BlockingIOError: [Errno 11]
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
def calculate_shape_IoU(pred_np, seg_np, label, class_choice, visual=False):
seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
index_start = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47]
if not visual:
label = label.squeeze()
shape_ious = []
for shape_idx in range(seg_np.shape[0]):
if not class_choice:
start_index = index_start[label[shape_idx]]
num = seg_num[label[shape_idx]]
parts = range(start_index, start_index + num)
else:
parts = range(seg_num[label[0]])
part_ious = []
for part in parts:
I = np.sum(np.logical_and(pred_np[shape_idx] == part, seg_np[shape_idx] == part))
U = np.sum(np.logical_or(pred_np[shape_idx] == part, seg_np[shape_idx] == part))
if U == 0:
iou = 1 # If the union of groundtruth and prediction points is empty, then count part IoU as 1
else:
iou = I / float(U)
part_ious.append(iou)
shape_ious.append(np.mean(part_ious))
return shape_ious
def partseg_loss(pred, gold, smoothing=True):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing:
eps = 0.2
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
loss = -(one_hot * log_prb).sum(dim=1).mean()
else:
loss = F.cross_entropy(pred, gold, reduction='mean')
return loss