-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathevaluate_routes_slurm_plant.py
364 lines (323 loc) · 14.5 KB
/
evaluate_routes_slurm_plant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
Evaluates a driving model on a set of CARLA routes wherein each route is evaluated on a separate machine in parallel.
This script generates the necessary shell files to run this on a SLURM cluster.
It also monitors the evaluation and resubmits crashed routes.
At the end all results files are aggregated and parsed.
Best run inside a tmux terminal.
"""
import subprocess
import time
from pathlib import Path
import os
import fnmatch
import ujson
import argparse
import sys
# Our centOS is missing some c libraries.
# Usually miniconda has them, so we tell the linker to look there as well.
newlib = '/mnt/lustre/work/geiger/bjaeger25/home/miniconda3/lib'
if not newlib in os.environ['LD_LIBRARY_PATH']:
os.environ['LD_LIBRARY_PATH'] += ':' + newlib
def create_run_eval_bash(bash_save_dir, results_save_dir, route_path, route, checkpoint, logs_save_dir,
carla_tm_port_start, carla_root, seed, team_code):
Path(f'{results_save_dir}').mkdir(parents=True, exist_ok=True)
with open(f'{bash_save_dir}/eval_{route}.sh', 'w', encoding='utf-8') as rsh:
rsh.write(f'''\
export CARLA_ROOT={carla_root}
export CARLA_SERVER=${{CARLA_ROOT}}/CarlaUE4.sh
export PYTHONPATH=$PYTHONPATH:${{CARLA_ROOT}}/PythonAPI/carla
export SCENARIO_RUNNER_ROOT=scenario_runner_autopilot
export LEADERBOARD_ROOT=leaderboard_autopilot
export PYTHONPATH="${{SCENARIO_RUNNER_ROOT}}":"${{LEADERBOARD_ROOT}}":${{PYTHONPATH}}
''')
rsh.write(f"""
export PORT=$1
echo 'World Port:' $PORT
export TM_PORT=`comm -23 <(seq {carla_tm_port_start} {carla_tm_port_start+49} | sort) <(ss -Htan | awk '{{print $4}}' | cut -d':' -f2 | sort -u) | shuf | head -n 1`
echo 'TM Port:' $TM_PORT
export ROUTES={route_path}{route}.xml
export TEAM_AGENT={team_code}/plant_agent.py
export TEAM_CONFIG={team_code}/checkpoints/{checkpoint}/
export CHALLENGE_TRACK_CODENAME=MAP
export REPETITIONS=1
export RESUME=1
export SEED={seed}
export CHECKPOINT_ENDPOINT={results_save_dir}/{route}.json
export DEBUG_ENV_AGENT=0
export RECORD=1
export VISU_PLANT=0
export DIRECT=0
export COMPILE=0
export TOWN=eval
export REPETITION=0
export DATAGEN=0
export TUNED_AIM_DISTANCE=0
export SLOWER=1
export UNCERTAINTY_WEIGHT=1
export SAVE_PATH={logs_save_dir}
""")
rsh.write('''
python3 ${LEADERBOARD_ROOT}/leaderboard/leaderboard_evaluator_local.py \
--routes=${ROUTES} \
--repetitions=${REPETITIONS} \
--track=${CHALLENGE_TRACK_CODENAME} \
--checkpoint=${CHECKPOINT_ENDPOINT} \
--agent=${TEAM_AGENT} \
--agent-config=${TEAM_CONFIG} \
--debug=0 \
--traffic-manager-seed=${SEED} \
--record=${RECORD_PATH} \
--resume=${RESUME} \
--port=${PORT} \
--timeout=900 \
--traffic-manager-port=${TM_PORT}
''')
def make_jobsub_file(commands, job_number, exp_name, exp_root_name, partition):
os.makedirs(f'evaluation/{exp_root_name}/{exp_name}/run_files/logs', exist_ok=True)
os.makedirs(f'evaluation/{exp_root_name}/{exp_name}/run_files/job_files', exist_ok=True)
job_file = f'evaluation/{exp_root_name}/{exp_name}/run_files/job_files/{job_number}.sh'
qsub_template = f"""#!/bin/bash
#SBATCH --job-name={exp_name}{job_number}
#SBATCH --partition={partition}
#SBATCH -o evaluation/{exp_root_name}/{exp_name}/run_files/logs/qsub_out{job_number}.log
#SBATCH -e evaluation/{exp_root_name}/{exp_name}/run_files/logs/qsub_err{job_number}.log
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --mem=20gb
#SBATCH --time=00-06:00
#SBATCH --gres=gpu:1
"""
for cmd in commands:
qsub_template = qsub_template + f"""
{cmd}
"""
with open(job_file, 'w', encoding='utf-8') as f:
f.write(qsub_template)
return job_file
def get_num_jobs(job_name, username):
len_usrn = len(username)
num_running_jobs = int(
subprocess.check_output(
f"SQUEUE_FORMAT2='username:{len_usrn},name:130' squeue --sort V | grep {username} | grep {job_name} | wc -l",
shell=True,
).decode('utf-8').replace('\n', ''))
with open('max_num_jobs.txt', 'r', encoding='utf-8') as f:
max_num_parallel_jobs = int(f.read())
return num_running_jobs, max_num_parallel_jobs
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--benchmark', type=str, default='routes_validation',
help='Route files need to be stored in {benchmark}_split folder'
'Options: , longest6, routes_validation')
parser.add_argument('--experiment',
type=str,
required=True,
help='Name of folder where the model files are stored in e.g. tfpp_020_0')
parser.add_argument('--model_dir',
type=str,
default='/mnt/lustre/work/geiger/bjaeger25/garage_2_cleanup/results',
help='Folder containing all the experiment folders.')
parser.add_argument('--code_root',
type=str,
default='/mnt/lustre/work/geiger/bjaeger25/garage_2_cleanup',
help='Root folder containing all the code folders.')
parser.add_argument('--carla_root',
type=str,
default='/mnt/lustre/work/geiger/bjaeger25/CARLA_0_9_15',
help='Directory of the CARLA installation')
parser.add_argument('--partition',
type=str,
default='2080-galvani',
help='Slurm partition to run the job on.')
parser.add_argument('--username',
type=str,
default='bjaeger25',
help='Slurm username')
parser.add_argument('--epochs',
nargs='+',
default=('model_0046'),
type=str,
help='Model names to be evaluated')
parser.add_argument('--team_code',
type=str,
default='team_code',
help='Which team code folder to use')
parser.add_argument('--num_repetitions',
type=int,
default=3,
help='How often to repeat the same routes.')
args, unknown = parser.parse_known_args()
print(f'Unkown arguments: {unknown}')
num_repetitions = args.num_repetitions
benchmark = args.benchmark
experiment = args.experiment
model_dir = args.model_dir
code_root = args.code_root
carla_root = args.carla_root
partition = args.partition
username = args.username
experiment_name_stem = f'{experiment}_{benchmark}'
exp_names_tmp = []
seeds = []
for i in range(num_repetitions):
exp_names_tmp.append(experiment_name_stem + f'_e{i}')
seeds.append(i)
route_path = f'leaderboard/data/{benchmark}_split/'
route_pattern = '*.xml'
carla_world_port_start = 10000
carla_streaming_port_start = 20000
carla_tm_port_start = 30000
epochs = args.epochs
job_nr = 0
experiment_result_folders = []
for epoch in epochs:
# Root folder in which each of the evaluation seeds will be stored
experiment_name_root = experiment_name_stem + '_' + epoch
experiment_result_folders.append(experiment_name_root)
exp_names = []
for name in exp_names_tmp:
exp_names.append(name + '_' + epoch)
checkpoint = experiment
checkpoint_new_name = checkpoint + '_' + epoch
# Links the model file into team_code
copy_model = True
if copy_model:
# copy checkpoint to my folder
cmd = f'mkdir -p {args.team_code}/checkpoints/{checkpoint_new_name}'
print(cmd)
os.system(cmd)
cmd = f'cp {model_dir}/{checkpoint}/config.json {args.team_code}/checkpoints/{checkpoint_new_name}/'
print(cmd)
os.system(cmd)
cmd = f'ln -sf {model_dir}/{checkpoint}/{epoch}.pth {args.team_code}/checkpoints/{checkpoint_new_name}/model.pth'
print(cmd)
os.system(cmd)
route_files = []
for root, _, files in os.walk(route_path):
for name in files:
if fnmatch.fnmatch(name, route_pattern):
route_files.append(os.path.join(root, name))
for exp_name in exp_names:
bash_save_dir = Path(f'evaluation/{experiment_name_root}/{exp_name}/run_bashs')
results_save_dir = Path(f'evaluation/{experiment_name_root}/{exp_name}/results')
logs_save_dir = Path(f'evaluation/{experiment_name_root}/{exp_name}/logs')
bash_save_dir.mkdir(parents=True, exist_ok=True)
results_save_dir.mkdir(parents=True, exist_ok=True)
logs_save_dir.mkdir(parents=True, exist_ok=True)
meta_jobs = {}
for idx, exp_name in enumerate(exp_names):
for route in route_files:
route = Path(route).stem
bash_save_dir = Path(f'evaluation/{experiment_name_root}/{exp_name}/run_bashs')
results_save_dir = Path(f'evaluation/{experiment_name_root}/{exp_name}/results')
logs_save_dir = Path(f'evaluation/{experiment_name_root}/{exp_name}/logs')
commands = []
# Finds a free port
commands.append(
f'FREE_WORLD_PORT=`comm -23 <(seq {carla_world_port_start} {carla_world_port_start + 49} | sort) '
f'<(ss -Htan | awk \'{{print $4}}\' | cut -d\':\' -f2 | sort -u) | shuf | head -n 1`')
commands.append("echo 'World Port:' $FREE_WORLD_PORT")
commands.append(
f'FREE_STREAMING_PORT=`comm -23 <(seq {carla_streaming_port_start} {carla_streaming_port_start + 49} '
f'| sort) <(ss -Htan | awk \'{{print $4}}\' | cut -d\':\' -f2 | sort -u) | shuf | head -n 1`')
commands.append("echo 'Streaming Port:' $FREE_STREAMING_PORT")
# NOTE remove -nullrhi if you want to use sensors / rendering.
commands.append(
f'{carla_root}/CarlaUE4.sh -carla-rpc-port=${{FREE_WORLD_PORT}} -nosound -RenderOffScreen '
f'-carla-primary-port=0 -graphicsadapter=0 -carla-streaming-port=${{FREE_STREAMING_PORT}} &')
commands.append('sleep 180') # Waits for CARLA to finish starting
create_run_eval_bash(bash_save_dir,
results_save_dir,
route_path,
route,
checkpoint_new_name,
logs_save_dir,
carla_tm_port_start,
carla_root=carla_root,
seed=seeds[idx],
team_code=args.team_code)
commands.append(f'chmod u+x {bash_save_dir}/eval_{route}.sh')
commands.append(f'./{bash_save_dir}/eval_{route}.sh $FREE_WORLD_PORT')
commands.append('sleep 2')
carla_world_port_start += 50
carla_streaming_port_start += 50
carla_tm_port_start += 50
job_file = make_jobsub_file(commands=commands,
job_number=job_nr,
exp_name=experiment_name_stem,
exp_root_name=experiment_name_root,
partition=partition)
result_file = f'{results_save_dir}/{route}.json'
# Wait until submitting new jobs that the #jobs are at below max
num_running_jobs, max_num_parallel_jobs = get_num_jobs(job_name=experiment_name_stem, username=username)
print(f'{num_running_jobs}/{max_num_parallel_jobs} jobs are running...')
while num_running_jobs >= max_num_parallel_jobs:
num_running_jobs, max_num_parallel_jobs = get_num_jobs(job_name=experiment_name_stem, username=username)
time.sleep(0.05)
print(f'Submitting job {job_nr}/{len(route_files) * num_repetitions}: {job_file}')
jobid = subprocess.check_output(f'sbatch {job_file}', shell=True).decode('utf-8').strip().rsplit(' ',
maxsplit=1)[-1]
meta_jobs[jobid] = (False, job_file, result_file, 0)
job_nr += 1
training_finished = False
while not training_finished:
num_running_jobs, max_num_parallel_jobs = get_num_jobs(job_name=experiment_name_stem, username=username)
print(f'{num_running_jobs} jobs are running...')
time.sleep(10)
# resubmit unfinished jobs
for k in list(meta_jobs.keys()):
job_finished, job_file, result_file, resubmitted = meta_jobs[k]
need_to_resubmit = False
if not job_finished and resubmitted < 5:
# check whether job is running
if int(subprocess.check_output(f'squeue | grep {k} | wc -l', shell=True).decode('utf-8').strip()) == 0:
# check whether result file is finished?
if os.path.exists(result_file):
with open(result_file, 'r', encoding='utf-8') as f_result:
evaluation_data = ujson.load(f_result)
progress = evaluation_data['_checkpoint']['progress']
if len(progress) < 2 or progress[0] < progress[1]:
need_to_resubmit = True
else:
for record in evaluation_data['_checkpoint']['records']:
if record['status'] == 'Failed - Agent couldn\'t be set up':
need_to_resubmit = True
print('Resubmit - Agent not setup')
elif record['status'] == 'Failed':
need_to_resubmit = True
elif record['status'] == 'Failed - Simulation crashed':
need_to_resubmit = True
elif record['status'] == 'Failed - Agent crashed':
need_to_resubmit = True
if not need_to_resubmit:
# delete old job
print(f'Finished job {job_file}')
meta_jobs[k] = (True, None, None, 0)
else:
need_to_resubmit = True
if need_to_resubmit:
# Remove crashed results file
if os.path.exists(result_file):
print('Remove file: ', result_file)
Path(result_file).unlink()
print(f'resubmit sbatch {job_file}')
jobid = subprocess.check_output(f'sbatch {job_file}', shell=True).decode('utf-8').strip().rsplit(' ',
maxsplit=1)[-1]
meta_jobs[jobid] = (False, job_file, result_file, resubmitted + 1)
meta_jobs[k] = (True, None, None, 0)
time.sleep(10)
if num_running_jobs == 0:
training_finished = True
# for exp_result_root in experiment_result_folders:
# print('Evaluation finished. Start parsing results.')
# eval_root = f'{code_root}/evaluation/{exp_result_root}'
# subprocess.check_call(
# f'python {code_root}/tools/result_parser.py '
# f'--xml {code_root}/custom_leaderboard/leaderboard/data/{benchmark}.xml '
# f'--results {eval_root} --strict',
# stdout=sys.stdout,
# stderr=sys.stderr,
# shell=True)
if __name__ == '__main__':
main()