-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWUPS.py
195 lines (146 loc) · 5.28 KB
/
WUPS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python
"""
Author: Mateusz Malinowski
Email: [email protected]
The script assumes there are two files
- first file with ground truth answers
- second file with predicted answers
both answers are line-aligned
The script also assumes that answer items are comma separated.
For instance, chair,table,window
It is also a set measure, so not exactly the same as accuracy
even if dirac measure is used since {book,book}=={book}, also {book,chair}={chair,book}
Logs:
05.09.2015 - white spaces surrounding words are stripped away so that {book, chair}={book,chair}
"""
import sys
#import enchant
from numpy import prod
from nltk.corpus import wordnet as wn
def file2list(filepath):
with open(filepath,'r') as f:
lines =[k for k in
[k.strip() for k in f.readlines()]
if len(k) > 0]
return lines
def list2file(filepath,mylist):
mylist='\n'.join(mylist)
with open(filepath,'w') as f:
f.writelines(mylist)
def items2list(x):
"""
x - string of comma-separated answer items
"""
return [l.strip() for l in x.split(',')]
def fuzzy_set_membership_measure(x,A,m):
"""
Set membership measure.
x: element
A: set of elements
m: point-wise element-to-element measure m(a,b) ~ similarity(a,b)
This function implments a fuzzy set membership measure:
m(x \in A) = max_{a \in A} m(x,a)}
"""
return 0 if A==[] else max(map(lambda a: m(x,a), A))
def score_it(A,T,m):
"""
A: list of A items
T: list of T items
m: set membership measure
m(a \in A) gives a membership quality of a into A
This function implements a fuzzy accuracy score:
score(A,T) = min{prod_{a \in A} m(a \in T), prod_{t \in T} m(a \in A)}
where A and T are set representations of the answers
and m is a measure
"""
if A==[] and T==[]:
return 1
# print A,T
score_left=0 if A==[] else prod(map(lambda a: m(a,T), A))
score_right=0 if T==[] else prod(map(lambda t: m(t,A),T))
return min(score_left,score_right)
# implementations of different measure functions
def dirac_measure(a,b):
"""
Returns 1 iff a=b and 0 otherwise.
"""
if a==[] or b==[]:
return 0.0
return float(a==b)
def wup_measure(a,b,similarity_threshold=0.925):
"""
Returns Wu-Palmer similarity score.
More specifically, it computes:
max_{x \in interp(a)} max_{y \in interp(b)} wup(x,y)
where interp is a 'interpretation field'
"""
def get_semantic_field(a):
weight = 1.0
semantic_field = wn.synsets(a,pos=wn.NOUN)
return (semantic_field,weight)
def get_stem_word(a):
"""
Sometimes answer has form word\d+:wordid.
If so we return word and downweight
"""
weight = 1.0
return (a,weight)
global_weight=1.0
(a,global_weight_a)=get_stem_word(a)
(b,global_weight_b)=get_stem_word(b)
global_weight = min(global_weight_a,global_weight_b)
if a==b:
# they are the same
return 1.0*global_weight
if a==[] or b==[]:
return 0
interp_a,weight_a = get_semantic_field(a)
interp_b,weight_b = get_semantic_field(b)
if interp_a == [] or interp_b == []:
return 0
# we take the most optimistic interpretation
global_max=0.0
for x in interp_a:
for y in interp_b:
local_score=x.wup_similarity(y)
if local_score > global_max:
global_max=local_score
# we need to use the semantic fields and therefore we downweight
# unless the score is high which indicates both are synonyms
if global_max < similarity_threshold:
interp_weight = 0.1
else:
interp_weight = 1.0
final_score=global_max*weight_a*weight_b*interp_weight*global_weight
return final_score
###
if __name__ == '__main__':
if len(sys.argv) < 4:
print ('Usage: path to true answers, path to predicted answers, threshold')
print ('If threshold is -1, then the standard Accuracy is used')
sys.exit("3 arguments must be given")
# folders
gt_filepath=sys.argv[1]
pred_filepath=sys.argv[2]
input_gt=file2list(gt_filepath)
input_pred=file2list(pred_filepath)
thresh=float(sys.argv[3])
if thresh == -1:
our_element_membership=dirac_measure
else:
our_element_membership=lambda x,y: wup_measure(x,y,thresh)
our_set_membership=\
lambda x,A: fuzzy_set_membership_measure(x,A,our_element_membership)
if thresh == -1:
print ('standard Accuracy is used')
else:
print ('soft WUPS at %1.2f is used') % thresh
score_list=[score_it(items2list(ta),items2list(pa),our_set_membership)
for (ta,pa) in zip(input_gt,input_pred)]
print ('computing the final score')
#final_score=sum(map(lambda x:float(x)/float(len(score_list)),score_list))
final_score=float(sum(score_list))/float(len(score_list))
# filtering to obtain the results
#print 'full score:', score_list
print ('exact final score:', final_score)
print ('final score is %2.2f%%' % (final_score * 100.0))