-
Notifications
You must be signed in to change notification settings - Fork 3
/
NeuralNetTheano.py
272 lines (214 loc) · 11.3 KB
/
NeuralNetTheano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 19 00:54:04 2016
@author: ayooshmac
"""
import numpy as np
import cPickle
import gzip
import theano
import theano.tensor as T
from theano.tensor.nnet import conv
from theano.tensor.signal import pool
from theano.tensor.nnet import softmax
from theano.tensor import shared_randomstreams
#Activation functions for neurons
def linear(z):
return z
def ReLu(x):
return T.max(0, x)
from theano.tensor.nnet import sigmoid
GPU = True
if GPU:
print "Trying to run under a GPU. If this is not wanted, then modify "+\
"set the GPU flag to False."
try: theano.config.device = 'gpu'
except: pass # it's already set
theano.config.floatX = 'float32'
else:
print "Running with a CPU. If this is not wanted, then the modify "+\
"network3.py to set\nthe GPU flag to True."
def load_data_shared(filename="./mnist.pkl.gz"):
"""
Loads data from file. Returns a tuple of 3 lists, containing training data,
validation data and test data in order.
The training data , validation and test data are tuples of two numpy arrays
of length 10,000 each. First of these is contains 784x1 numpy arrays which
represents the pixel intensities of the image. The second contains integers
representing the correct classification for examples of the corresponding
indexes.
"""
f = gzip.open(filename, "rb")
training_data, validation_data, test_data = cPickle.load(f)
f.close()
def shared(data):
"""
Place the data into shared variables. This allows Theano to put the data in GPU,
if one is availible
"""
x = theano.shared(np.asarray(data[0], dtype = theano.config.floatX), borrow = True)
y = theano.shared(np.asarray(data[1], dtype = theano.config.floatX), borrow = True)
return x, T.cast(y, "int32")
return [shared(training_data), shared(validation_data), shared(test_data)]
training_data, validation_data, test_data = load_data_shared()
class ConvPoolLayer(object):
def __init__(self, filter_shape, image_shape, pool_size = (2,2), activation_fn = sigmoid):
"""`filter_shape` is a tuple of length 4, whose entries are the number
of filters, the number of input feature maps, the filter height, and the
filter width.
`image_shape` is a tuple of length 4, whose entries are the
mini-batch size, the number of input feature maps, the image
height, and the image width.
`poolsize` is a tuple of length 2, whose entries are the y and
x pooling sizes.
"""
self.filter_shape = filter_shape
self.image_shape = image_shape
self.pool_size = pool_size
self.activation_fn = activation_fn
#Inititialising weights
n_out = (filter_shape[0]*np.prod(filter_shape[2:])/np.prod(pool_size))
self.w = theano.shared(np.asarray(np.random.normal(loc = 0.0, scale =np.sqrt(1.0/n_out), size = filter_shape),
dtype = theano.config.floatX),
borrow = True)
self.b = theano.shared(np.asarray(np.random.normal(loc = 0.0, scale = 1.0,
size = (filter_shape[0],)), dtype=theano.config.floatX), borrow = True)
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape(self.image_shape)
conv_out = conv.conv2d(self.inpt, filters = self.w, filter_shape=self.filter_shape,
image_shape=self.image_shape)
pooled_out = pool.pool_2d(input=conv_out, ds = self.pool_size, ignore_border=True)
self.output = self.activation_fn(
pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output_dropout = self.output
class FullyConnectedLayer(object):
def __init__(self, n_in, n_out, activation_fn = sigmoid, p_dropout = 0.0):
self.n_in = n_in
self.n_out = n_out
self.activation_fn = activation_fn
self.p_dropout = p_dropout
#Initiaze the weights
self.w = theano.shared(np.asarray(np.random.normal(loc = 0.0, scale = 1.0/n_out, size = (n_in, n_out))
,dtype = theano.config.floatX), borrow = True, name="w")
self.b = theano.shared(np.asarray(np.random.normal(loc = 0.0, scale = 1.0, size = (n_out,)),
dtype = theano.config.floatX), borrow = True, name="b")
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = self.activation_fn((1- self.p_dropout)*(T.dot(self.inpt, self.w) + self.b))
self.y_out = T.argmax(self.output, axis = 1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = self.activation_fn(
T.dot(self.inpt_dropout, self.w) + self.b)
def accuracy(self,y):
return T.mean(T.eq(y, self.y_out))
class SoftmaxLayer(object):
def __init__(self, n_in, n_out, p_dropout = 0.0):
self.n_in = n_in
self.n_out = n_out
self.p_dropout= p_dropout
#Initialize the weights
self.w = theano.shared(np.asarray(np.zeros((n_in, n_out)),dtype = theano.config.floatX),
borrow = True, name = "w")
self.b = theano.shared(np.asarray(np.zeros((n_out,)), dtype= theano.config.floatX), borrow = True, name = "b")
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = softmax((1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
self.y_out = T.argmax(self.output, axis=1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = softmax(T.dot(self.inpt_dropout, self.w) + self.b)
def cost(self, net):
"Return the log-likelihood cost."
return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]), net.y])
def accuracy(self, y):
"Return the accuracy for the mini-batch."
return T.mean(T.eq(y, self.y_out))
def size(data):
"""Returns the size of the data"""
return data[0].get_value(borrow = True).shape[0]
def dropout_layer(layer, p_dropout):
srng = shared_randomstreams.RandomStreams(np.random.RandomState(0).randint(999999))
mask = srng.binomial(size = layer.shape, n = 1, p = 1 - p_dropout)
return layer*T.cast(mask, theano.config.floatX)
class Network(object):
def __init__(self, layers, mini_batch_size):
self.layers = layers
self.mini_batch_size = mini_batch_size
self.params = [param for layer in self.layers for param in layer.params]
self.x = T.matrix('x')
self.y = T.ivector('y')
init_layer = self.layers[0]
print init_layer
init_layer.set_inpt(self.x, self.x, self.mini_batch_size)
for j in xrange(1, len(self.layers)):
prev_layer, layer = self.layers[j-1], self.layers[j]
layer.set_inpt(prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)
self.output = self.layers[-1].output
self.output_dropout = self.layers[-1].output_dropout
def SGD(self, training_data, epochs, mini_batch_size, eta, validation_data, test_data, lmbda = 0.0):
training_x, training_y = training_data[0], training_data[1]
validation_x, validation_y = validation_data[0], validation_data[1]
test_x, test_y = test_data[0], test_data[1]
#calculate the size of batches
training_batches = size(training_data)/(mini_batch_size)
validation_batches = size(validation_data)/mini_batch_size
test_batches = size(test_data)/mini_batch_size
#define the symbolic realtion of l2 norm.
l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
cost = self.layers[-1].cost(self) + (0.5)*(lmbda)*(l2_norm_squared)/(training_batches)
grads = T.grad(cost,self.params)
updates = [(param, param - eta*grad) for param, grad in zip(self.params, grads)]
i = T.lscalar()
#
train_mb = theano.function([i], cost, updates = updates,
givens = {self.x: training_x[i*self.mini_batch_size : (i+1)*self.mini_batch_size], self.y: training_y[i*self.mini_batch_size : (i+1)*self.mini_batch_size]})
validate_mb_accuracy =theano.function([i], self.layers[-1].accuracy(self.y),
givens = {self.x: validation_x[i*self.mini_batch_size : (i+1)*self.mini_batch_size],
self.y: validation_y[i*self.mini_batch_size : (i+1)*self.mini_batch_size]})
theano.function(
[i], self.layers[-1].accuracy(self.y),
givens={
self.x:
test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
self.y:
test_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
})
self.test_mb_predictions = theano.function(
[i], self.layers[-1].y_out,
givens={
self.x:
test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
})
#Do the actual training data
best_val_accuracy = 0.0
for epoch in xrange(epochs):
for minibatch_index in range(training_batches):
iteration = epoch*(training_batches) + minibatch_index
if (iteration)%1000 == 0:
print("Batch Number", iteration, "trained")
train_mb(minibatch_index)
if (iteration + 1)%(training_batches) == 0:
validation_accuracy = np.mean([validate_mb_accuracy(j) for j in xrange(validation_batches)])
print "Epoch", epoch, "completed: ", "Validation accuracy:", validation_accuracy
if validation_accuracy>= best_val_accuracy:
print "This is the best validation accuracy so far"
if test_data:
test_accuracy= np.mean([validate_mb_accuracy(j) for j in xrange(test_batches)])
print "The test accuracy for this epoch is :", round(test_accuracy,4)
training_data, validation_data, test_data = load_data_shared()
mini_batch_size = 10
net = Network([
ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
filter_shape=(20, 1, 5, 5),
poolsize=(2, 2)),
ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
filter_shape=(40, 20, 5, 5),
pool_size=(2, 2)),
FullyConnectedLayer(n_in=40*4*4, n_out=100),
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
net.SGD(training_data, 60, mini_batch_size, 0.1,
validation_data, test_data)