forked from wiibrew/pytorch-yolo2
-
Notifications
You must be signed in to change notification settings - Fork 8
/
FocalLoss.py
109 lines (86 loc) · 3.48 KB
/
FocalLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# Written by Chao CHEN ([email protected])
# Created On: 2017-08-11
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class FocalLoss(nn.Module):
r"""
This criterion is a implemenation of Focal Loss, which is proposed in
Focal Loss for Dense Object Detection.
Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class])
The losses are averaged across observations for each minibatch.
Args:
alpha(1D Tensor, Variable) : the scalar factor for this criterion
gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5),
putting more focus on hard, misclassified examples
size_average(bool): size_average(bool): By default, the losses are averaged over observations for each minibatch.
However, if the field size_average is set to False, the losses are
instead summed for each minibatch.
"""
def __init__(self, class_num, alpha=None, gamma=2, size_average=True):
super(FocalLoss, self).__init__()
if alpha is None:
self.alpha = Variable(torch.ones(class_num, 1))
else:
if isinstance(alpha, Variable):
self.alpha = alpha
else:
self.alpha = Variable(alpha)
self.gamma = gamma
self.class_num = class_num
self.size_average = size_average
def forward(self, inputs, targets):
N = inputs.size(0)
print(N)
C = inputs.size(1)
P = F.softmax(inputs)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = Variable(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
#print(class_mask)
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
alpha = self.alpha[ids.data.view(-1)]
probs = (P*class_mask).sum(1).view(-1,1)
log_p = probs.log()
#print('probs size= {}'.format(probs.size()))
#print(probs)
batch_loss = -alpha*(torch.pow((1-probs), self.gamma))*log_p
#print('-----bacth_loss------')
#print(batch_loss)
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
return loss
if __name__ == "__main__":
alpha = torch.rand(21, 1)
print(alpha)
FL = FocalLoss(class_num=5, gamma=0 )
CE = nn.CrossEntropyLoss()
N = 4
C = 5
inputs = torch.rand(N, C)
targets = torch.LongTensor(N).random_(C)
inputs_fl = Variable(inputs.clone(), requires_grad=True)
targets_fl = Variable(targets.clone())
inputs_ce = Variable(inputs.clone(), requires_grad=True)
targets_ce = Variable(targets.clone())
print('----inputs----')
print(inputs)
print('---target-----')
print(targets)
fl_loss = FL(inputs_fl, targets_fl)
ce_loss = CE(inputs_ce, targets_ce)
print('ce = {}, fl ={}'.format(ce_loss.data[0], fl_loss.data[0]))
fl_loss.backward()
ce_loss.backward()
#print(inputs_fl.grad.data)
print(inputs_ce.grad.data)