-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathinference.py
235 lines (184 loc) · 10.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import glob
import warnings
from random import randint
from argparse import ArgumentParser
import torchvision.transforms.functional as tf
warnings.filterwarnings(action='ignore')
import numpy as np
from PIL import Image
from tqdm import tqdm
from scipy.interpolate import griddata as interp_grid
from scipy.ndimage import minimum_filter, maximum_filter
import torch
import torch.nn.functional as F
from mv_diffusion import mvdream_diffusion_model
from mv_diffusion_SR import mvdream_diffusion_model as mvdream_diffusion_model_SR
from transformers import CLIPTextModel, CLIPTokenizer
import cv2
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import LinearRegression
import re
from torch.autograd import Variable
from math import exp
import argparse
import gc
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument('--single_view', action='store_true', help='Use single view mode')
parser.add_argument('--super_resolution', action='store_true', help='Enable super resolution')
parser.add_argument('--base_model_path', type=str, help='Base model directory path')
parser.add_argument('--source_imgs_dir', type=str, help='Source images directory path')
parser.add_argument('--warp_root_dir', type=str, help='Warp images directory path')
parser.add_argument('--output_dir', type=str, help='Output directory path')
# Parse arguments
args = parser.parse_args()
def PIL2tensor(height,width,num_frames,masks,warps,logicalNot=False):
channels = 3
pixel_values = torch.empty((num_frames, channels, height, width))
condition_pixel_values = torch.empty((num_frames, channels, height, width))
masks_pixel_values = torch.ones((num_frames, 1, height, width))
# input_ids
prompt = ''
for i, img in enumerate(masks):
img = masks[i]
img = img.convert('L') # make sure channel 1
img_resized = img.resize((width, height)) # hard code here
img_tensor = torch.from_numpy(np.array(img_resized)).float()
# Normalize the image by scaling pixel values to [0, 1]
img_normalized = img_tensor / 255
mask_condition = (img_normalized > 0.9).float()
masks_pixel_values[i] = mask_condition
for i, img in enumerate(warps):
# Resize the image and convert it to a tensor
img_resized = img.resize((width, height)) # hard code here
img_tensor = torch.from_numpy(np.array(img_resized)).float()
# Normalize the image by scaling pixel values to [-1, 1]
img_normalized = img_tensor / 127.5 - 1
img_normalized = img_normalized.permute(2, 0, 1) # For RGB images
if(logicalNot):
img_normalized = torch.logical_not(masks_pixel_values[i])*(-1) + masks_pixel_values[i]*img_normalized
condition_pixel_values[i] = img_normalized
return [prompt], {
'conditioning_pixel_values': condition_pixel_values, # [-1,1]
'masks': masks_pixel_values# [0,1]
}
def get_image_files(folder_path):
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.gif', '*.bmp', '*.tiff', '*.webp']
image_files = []
for ext in image_extensions:
image_files.extend(glob.glob(os.path.join(folder_path, ext)))
image_names = [os.path.basename(file) for file in image_files]
return image_names
single_view = args.single_view
super_resolution = args.super_resolution
base_model_path = args.base_model_path
if(single_view):
mv_unet_path = base_model_path + "/unet/single/ema-checkpoint"
print(mv_unet_path)
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer")
else:
mv_unet_path = base_model_path + "/unet/sparse/ema-checkpoint"
print(mv_unet_path)
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer")
rgb_model = mvdream_diffusion_model(base_model_path,mv_unet_path,tokenizer,seed=12345)
mv_unet_path = base_model_path + "/unet/SR/ema-checkpoint"
rgb_model_SR = mvdream_diffusion_model_SR(base_model_path,mv_unet_path,tokenizer,quantization=False,seed=12345)
source_imgs_dir = args.source_imgs_dir
warp_root_dir = args.warp_root_dir
output_root_dir = args.output_dir
os.makedirs(output_root_dir, exist_ok=True)
height_mvd = 512
width_mvd = 512
masks_infer = []
warps_infer = []
input_names = []
gt_num_b = 0
mask2 = np.ones((height_mvd,width_mvd), dtype=np.float32)
image_names_ref = get_image_files(source_imgs_dir)
fimage = Image.open(os.path.join(source_imgs_dir + image_names_ref[0]))
(width, height)= fimage.size
for imn in image_names_ref:
masks_infer.append(Image.fromarray(np.repeat(np.expand_dims(np.round(mask2*255.).astype(np.uint8),axis=2),3,axis=2)).resize((width_mvd, height_mvd)))
warps_infer.append(Image.open(os.path.join(source_imgs_dir + imn)))
input_names.append(imn)
gt_num_b = gt_num_b + 1
image_files = glob.glob(os.path.join(warp_root_dir, "warp_*"))
image_names = [os.path.basename(image) for image in image_files]
image_names.sort()
print(image_names)
for ins in image_names:
warps_infer.append(Image.open(os.path.join(warp_root_dir, ins)))
masks_infer.append(Image.open(os.path.join(warp_root_dir, ins.replace('warp','mask'))))
input_names.append(ins)
print('sequence length:', len(warps_infer))
images_predict = []
images_mask_p = []
images_predict_names = []
grounp_size = len(masks_infer)
for i in range(0, len(masks_infer[gt_num_b:]), grounp_size):
if(len(images_predict)!=0):
masks_infer_batch = masks_infer[:gt_num_b] + [masks_infer_batch[-1]] + masks_infer[(gt_num_b+i):(i+gt_num_b+grounp_size)]
warp_infer_batch = warps_infer[:gt_num_b] + [images_predict[-1]] + warps_infer[(gt_num_b+i):(i+gt_num_b+grounp_size)]
input_names_batch = input_names[:gt_num_b] + [input_names_batch[len(masks_infer_batch)//2]] + [input_names_batch[-1]] + input_names[(gt_num_b+i):(i+gt_num_b+grounp_size)]
else:
masks_infer_batch = masks_infer[:gt_num_b] + masks_infer[(gt_num_b+i):(i+gt_num_b+grounp_size)]
warp_infer_batch = warps_infer[:gt_num_b] + warps_infer[(gt_num_b+i):(i+gt_num_b+grounp_size)]
input_names_batch = input_names[:gt_num_b] + input_names[(gt_num_b+i):(i+gt_num_b+grounp_size)]
prompt, batch = PIL2tensor(height_mvd,width_mvd,len(masks_infer_batch),masks_infer_batch,warp_infer_batch,logicalNot=False)
if(len(images_predict)!=0):
images_predict_batch = rgb_model.inference_next_frame(prompt,batch,len(masks_infer_batch),height_mvd,width_mvd,gt_num_frames=gt_num_b,output_type='pil')
for jj in range(gt_num_b+1,len(images_predict_batch)):
images_predict.append(images_predict_batch[jj])
images_mask_p.append(batch['masks'][0][jj][0].cpu().numpy())
images_predict_names.append(input_names_batch[jj])
else:
images_predict_batch = rgb_model.inference_next_frame(prompt,batch,len(masks_infer_batch),height_mvd,width_mvd,gt_num_frames=gt_num_b,output_type='pil')
for jj in range(gt_num_b,len(images_predict_batch)):
images_predict.append(images_predict_batch[jj])
images_mask_p.append(batch['masks'][0][jj][0].cpu().numpy())
images_predict_names.append(input_names_batch[jj])
for jj in range(len(images_predict)):
images_predict[jj].resize((width, height)).save(os.path.join(output_root_dir,"predict_{}.jpg".format(images_predict_names[jj])))
if(super_resolution):
del mvdream_diffusion_model
gc.collect()
torch.cuda.empty_cache()
masks_infer_SR = []
warps_infer_SR = []
mask2 = np.ones((height_mvd*2,width_mvd*2), dtype=np.float32)
for imn in image_names_ref:
masks_infer_SR.append(Image.fromarray(np.repeat(np.expand_dims(np.round(mask2*255.).astype(np.uint8),axis=2),3,axis=2)).resize((width_mvd, height_mvd)))
warps_infer_SR.append(Image.open(os.path.join(source_imgs_dir + imn)))
for i in range(len(images_predict)):
masks_infer_SR.append(masks_infer[i])
warps_infer_SR.append(images_predict[i])
images_predict = []
images_predict_names = []
# grounp_size = min((len(masks_infer_SR) + 5)//2,50)
grounp_size = (len(masks_infer_SR) + 3) // 2
# grounp_size = (len(masks_infer_SR) + 3)
print('grounp_size:',grounp_size)
for i in range(0, len(masks_infer_SR[gt_num_b:]), grounp_size):
if(len(images_predict)!=0):
masks_infer_batch = masks_infer_SR[:gt_num_b] + [masks_infer_batch[len(masks_infer_batch)//2]] + [masks_infer_batch[-1]] + masks_infer_SR[(gt_num_b+i):(i+gt_num_b+grounp_size)]
warp_infer_batch = warps_infer_SR[:gt_num_b] + [images_predict[len(images_predict)//2]] + [images_predict[-1]] + warps_infer_SR[(gt_num_b+i):(i+gt_num_b+grounp_size)]
input_names_batch = input_names[:gt_num_b] + [input_names_batch[len(masks_infer_batch)//2]] + [input_names_batch[-1]] + input_names[(gt_num_b+i):(i+gt_num_b+grounp_size)]
else:
masks_infer_batch = masks_infer_SR[:gt_num_b] + masks_infer_SR[(gt_num_b+i):(i+gt_num_b+grounp_size)]
warp_infer_batch = warps_infer_SR[:gt_num_b] + warps_infer_SR[(gt_num_b+i):(i+gt_num_b+grounp_size)]
input_names_batch = input_names[:gt_num_b] + input_names[(gt_num_b+i):(i+gt_num_b+grounp_size)]
prompt, batch = PIL2tensor(height_mvd*2,width_mvd*2,len(masks_infer_batch),masks_infer_batch,warp_infer_batch)
if(len(images_predict)!=0):
images_predict_batch = rgb_model_SR.inference_next_frame(prompt,batch,len(masks_infer_batch),height_mvd*2,width_mvd*2,gt_num_frames=gt_num_b,output_type='pil')
for jj in range(gt_num_b+2,len(images_predict_batch)):
images_predict.append(images_predict_batch[jj])
images_predict_names.append(input_names_batch[jj])
else:
images_predict_batch = rgb_model_SR.inference_next_frame(prompt,batch,len(masks_infer_batch),height_mvd*2,width_mvd*2,gt_num_frames=gt_num_b,output_type='pil')
for jj in range(gt_num_b,len(images_predict_batch)):
images_predict.append(images_predict_batch[jj])
images_predict_names.append(input_names_batch[jj])
gc.collect()
torch.cuda.empty_cache()
for jj in range(len(images_predict)):
images_predict[jj].resize((width, height)).save(os.path.join(output_root_dir,"SR_predict_{}.jpg".format(images_predict_names[jj])))